Most cited article - PubMed ID 9244403
Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria
Coenzyme Q10 (CoQ10), a lipophilic substituted benzoquinone, is present in animal and plant cells. It is endogenously synthetized in every cell and involved in a variety of cellular processes. CoQ10 is an obligatory component of the respiratory chain in inner mitochondrial membrane. In addition, the presence of CoQ10 in all cellular membranes and in blood. It is the only endogenous lipid antioxidant. Moreover, it is an essential factor for uncoupling protein and controls the permeability transition pore in mitochondria. It also participates in extramitochondrial electron transport and controls membrane physicochemical properties. CoQ10 effects on gene expression might affect the overall metabolism. Primary changes in the energetic and antioxidant functions can explain its remedial effects. CoQ10 supplementation is safe and well-tolerated, even at high doses. CoQ10 does not cause any serious adverse effects in humans or experimental animals. New preparations of CoQ10 that are less hydrophobic and structural derivatives, like idebenone and MitoQ, are being developed to increase absorption and tissue distribution. The review aims to summarize clinical and experimental effects of CoQ10 supplementations in some neurological diseases such as migraine, Parkinson´s disease, Huntington´s disease, Alzheimer´s disease, amyotrophic lateral sclerosis, Friedreich´s ataxia or multiple sclerosis. Cardiovascular hypertension was included because of its central mechanisms controlling blood pressure in the brainstem rostral ventrolateral medulla and hypothalamic paraventricular nucleus. In conclusion, it seems reasonable to recommend CoQ10 as adjunct to conventional therapy in some cases. However, sometimes CoQ10 supplementations are more efficient in animal models of diseases than in human patients (e.g. Parkinson´s disease) or rather vague (e.g. Friedreich´s ataxia or amyotrophic lateral sclerosis).
- MeSH
- Antioxidants pharmacology MeSH
- Humans MeSH
- Mitochondrial Diseases * metabolism MeSH
- Mitochondria metabolism MeSH
- Nervous System Diseases * drug therapy metabolism MeSH
- Electron Transport MeSH
- Ubiquinone analogs & derivatives therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- coenzyme Q10 MeSH Browser
- Ubiquinone MeSH
Idebenone (IDE), a synthetic analog of coenzyme Q, strongly activates glycerol phosphate (GP) oxidation in brown adipose tissue mitochondria. GP oxidase, GP cytochrome c oxidoreductase and GP dehydrogenase activities were all significantly stimulated by 13 muM IDE. Substituted derivatives of IDE acetyl- and methoxyidebenone had similar activating effects. When succinate was used as substrate, no activation by IDE could be observed. The activation effect of IDE could be explained as release of the inhibition of glycerol phosphate dehydrogenase by endogenous free fatty acids. NADH oxidoreductase activity and oxidation of NADH-dependent substrates were inhibited by IDE. The extent of the inhibition and IDE concentration dependence varied when various substrates were tested, being highest for pyruvate and lowest for 2-oxoglutarate. This study thus showed that the effect of IDE on various mitochondrial enzymes is very different and thus its therapeutic use should take into account its specific effect on various mitochondrial dehydrogenases in relation to particular defects of mitochondrial respiratory chain.
- MeSH
- Enzyme Activation drug effects MeSH
- Adipose Tissue, Brown drug effects enzymology MeSH
- Cricetinae MeSH
- Cells, Cultured MeSH
- Mitochondria drug effects metabolism MeSH
- Electron Transport physiology MeSH
- Ubiquinone administration & dosage analogs & derivatives MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- idebenone MeSH Browser
- Ubiquinone MeSH