Nejvíce citovaný článek - PubMed ID 9353855
INTRODUCTION: A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method. METHODS: Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed. RESULTS: Exploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients. DISCUSSION: This study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.
- Klíčová slova
- illness course, outcome, schizophrenia, staging,
- MeSH
- dospělí MeSH
- faktorová analýza statistická MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- progrese nemoci * MeSH
- psychiatrické posuzovací škály statistika a číselné údaje MeSH
- schizofrenie klasifikace diagnóza patofyziologie MeSH
- Sotosův syndrom MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Nigérie MeSH
Statistical theory indicates that hierarchical clustering by interviewers or raters needs to be considered to avoid incorrect inferences when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale (PANSS) data to show the consequences (in terms of bias, variance and mean square error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA) estimates. Our investigation includes the performance of different estimators, such as maximum likelihood, weighted least squares and Markov Chain Monte Carlo (MCMC). Our simulation results suggest that ignoring clustering may lead to serious bias of the estimated factor loadings, item thresholds, and corresponding standard errors in CFAs for ordinal item response data typical of that commonly encountered in psychiatric research. In addition, fit indices tend to show a poor fit for the hypothesized structural model. MCMC estimation may be more robust against clustering than maximum likelihood and weighted least squares approaches but further investigation of these issues is warranted in future simulation studies of other datasets. Copyright © 2015 John Wiley & Sons, Ltd.
- Klíčová slova
- PANSS, factor analysis, hierarchical modelling, simulation,
- MeSH
- faktorová analýza statistická * MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- počítačová simulace MeSH
- psychiatrické posuzovací škály statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH