Most cited article - PubMed ID 9363536
Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases
The aim of this review is to follow the history of studies on endemiv arboviruses and the diseases they cause which were detected in the Czech lands (Bohemia, Moravia and Silesia (i.e., the Czech Republic)). The viruses involve tick-borne encephalitis, West Nile and Usutu flaviviruses; the Sindbis alphavirus; Ťahyňa, Batai, Lednice and Sedlec bunyaviruses; the Uukuniemi phlebovirus; and the Tribeč orbivirus. Arboviruses temporarily imported from abroad to the Czech Republic have been omitted. This brief historical review includes a bibliography of all relevant papers.
- Keywords
- arthropods, birds, mammals, mosquitoes, ticks,
- MeSH
- Arbovirus Infections history MeSH
- Arboviruses physiology MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Tick-borne encephalitis (TBE) is a substantial public health problem in many parts of Europe and Asia. To assess the effect of increasing TBE vaccination coverage in Austria, we compared incidence rates over 40 years for highly TBE-endemic countries of central Europe (Czech Republic, Slovenia, and Austria). For all 3 countries we found extensive annual and longer range fluctuations and shifts in distribution of patient ages, suggesting major variations in the complex interplay of factors influencing risk for exposure to TBE virus. The most distinctive effect was found for Austria, where mass vaccination decreased incidence to ≈16% of that of the prevaccination era. Incidence rates remained high for the nonvaccinated population. The vaccine was effective for persons in all age groups. During 2000-2011 in Austria, ≈4,000 cases of TBE were prevented by vaccination.
- MeSH
- Child MeSH
- Mass Vaccination * MeSH
- Incidence MeSH
- Encephalitis, Tick-Borne epidemiology immunology prevention & control virology MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Risk MeSH
- Age Factors MeSH
- Viral Vaccines administration & dosage immunology MeSH
- Encephalitis Viruses, Tick-Borne immunology MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Austria epidemiology MeSH
- Slovenia epidemiology MeSH
- Names of Substances
- Viral Vaccines MeSH
The main objective of this project was to predict Ixodes ricinus abundant habitats reliably as a means of tick-borne encephalitis (TBE) risk assessment for the prevention of this disease. The vegetation types were used as the indicators of an ecosystem suitable for tick occurrence, for TBE virus circulation and, accordingly, for the existence of natural foci of this infection. Remote sensing methods were used to determine the indicative plant cover. Satellite data covering an experimental area of 70 x 70 km in Central Bohemia, the Czech Republic, was acquired by the Landsat 5 TM scanner. Nine forest classes were recognized in the experimental area by successive supervised and unsupervised classifications and identified in a field-checking botanical survey. An epidemiological TBE map based on human cases contracted in the territory under study was exploited for the evaluation of risk in particular forest classes. Predictive maps are expressed both in digital and in printed forms at a scale of 1:300,000 for an overall risk evaluation and at a scale of 1:25,000 for a detailed local orientation.
- MeSH
- Risk Assessment MeSH
- Population Density MeSH
- Ixodes * MeSH
- Encephalitis, Tick-Borne * MeSH
- Humans MeSH
- Satellite Communications MeSH
- Trees MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH