Nejvíce citovaný článek - PubMed ID 9434162
Variability in CpNpG methylation in higher plant genomes
Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis). First, we used RepeatExplorer2 to calculate the genome proportion (GP) of all repeat types and compared the GP of long terminal repeat (LTR) retroelements against annotated complete and incomplete LTR retroelements (Ty1/copia and Ty3/gypsy) identified by DANTE in a whole genome assembly. We show that DANTE-identified LTR retroelements can comprise ∼0.75% of the inflorescence poly-A transcriptome and ∼0.24% of the stem ribo-depleted transcriptome. In the RNA libraries from inflorescence tissue, both LTR retroelements and DNA transposons identified by RepeatExplorer2 were highly abundant, where they may be taking advantage of the reduced epigenetic silencing in the germ line to amplify. Typically, there was a higher representation of DANTE-identified LTR retroelements in the transcriptome than RepeatExplorer2-identified LTR retroelements, potentially reflecting the transcription of elements that have insufficient genomic copy numbers to be detected by RepeatExplorer2. In contrast, for ribo-depleted libraries of stem tissues, the reverse was observed, with a higher transcriptome representation of RepeatExplorer2-identified LTR retroelements. For RepeatExplorer2-identified repeats, we show that the GP of most Ty1/copia and Ty3/gypsy families were positively correlated with their transcript proportion. In addition, guanine- and cytosine-rich repeats with high sequence similarity were also the most abundant in the transcriptome, and these likely represent young elements that are most capable of amplification due to their ability to evade epigenetic silencing.
INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
- Klíčová slova
- 5S rRNA genes, allopolyploidy, evolution, graph structure clustering, high-throughput sequencing, hybridization, repeatome,
- Publikační typ
- časopisecké články MeSH
Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.
- Klíčová slova
- bryophytes, cytosine methylation, epigenetics, genome evolution, histone marks, rDNA,
- Publikační typ
- časopisecké články MeSH
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
- Klíčová slova
- Concerted evolution, Cycadales, Cytosine methylation, Living fossil, rDNA,
- MeSH
- Cycas genetika MeSH
- DNA rostlinná genetika MeSH
- genetická transkripce genetika MeSH
- hybridizace in situ fluorescenční MeSH
- jednonukleotidový polymorfismus genetika MeSH
- mezerníky ribozomální DNA genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 5.8S genetika MeSH
- RNA ribozomální genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální 5.8S MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 26S MeSH Prohlížeč
Cytosine methylation levels and susceptibility to drug-induced hypomethylation have been studied in several Nicotiana tabacum (tobacco) DNA repetitive sequences. It has been shown using HapII, MspI, BamHI and Sau3AI methylation-sensitive restriction enzymes that the degree of 5'-mCmCG-3' methylation varied significantly between different repeats. There were almost saturation levels of 5-methylcytosine at the inner (3') cytosine position and variable degrees of methylation at the outer (5') cytosine at the enzyme recognition sites. The non-transcribed high copy satellite sequences (HRS60, GRS) displayed significant heterogeneity in methylation of their basic units while middle repetitive sequences (R8.1, GRD5, 5S rDNA) were more uniformly modified at both cytosine residues. Dihydroxypropyladenine (DHPA) treatment, which is thought to reduce DNA methyltransferase activity by increasing S-adenosylhomocysteine levels, resulted in extensive demethylation of the outer cytosine in all repeats, and the partial hypomethylation of cytosines at the inner positions in less densely methylated repeats such as HRS60 and GRS. The results suggest that hypomethylation of 5'-mCmCG-3' sites with DHPA is a gradual non-random process proceeding in the direction mCmCG-->CmCG-->CCG. The 18S-5.8S-25S rDNA was remarkably hypomethylated relative to the 5S rDNA at all restriction sites studied. Fluorescence in-situ hybridization showed that DNA decondensation within and between the 18S-5.8S-25S and 5S rDNA loci was variable in different nuclei. All nuclei had condensed and decondensed sequence. The chromatin of 18S-5.8S-25S rDNA was more readily digested with micrococcal nuclease than the 5S rDNA suggesting that the overall levels of decondensation were higher for 18S-5.8S-25S rDNA. Variable decondensation patterns within and between loci were also observed for GRS and HRS60. Cytosine methylation of the tobacco repeats is discussed with respect to transcription, overall levels of condensation and overall structure.
- MeSH
- adenin analogy a deriváty farmakologie MeSH
- cytosin metabolismus MeSH
- DNA rostlinná účinky léků izolace a purifikace metabolismus MeSH
- genetická transkripce MeSH
- genom rostlinný MeSH
- heterochromatin metabolismus MeSH
- interfáze MeSH
- jedovaté rostliny * MeSH
- kultivované buňky MeSH
- metylace DNA * MeSH
- nukleotidy metabolismus MeSH
- repetitivní sekvence nukleových kyselin MeSH
- restrikční enzymy MeSH
- satelitní DNA MeSH
- Southernův blotting MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 9-(2,3-dihydroxypropyl)adenine MeSH Prohlížeč
- adenin MeSH
- cytosin MeSH
- DNA rostlinná MeSH
- heterochromatin MeSH
- nukleotidy MeSH
- restrikční enzymy MeSH
- satelitní DNA MeSH