Glomerulonephritis (GN) encompasses a diverse group of immune-mediated diseases that damage the glomerular component of the nephron. While kidney biopsy remains the gold standard for diagnosis, it often fails to provide adequate insight into the underlying etiology of GN. Current classification systems have limited our understanding of the disease's pathophysiology and hinder the development of targeted therapies. Immunosuppressive treatments, such as glucocorticoids, calcineurin inhibitors, cyclophosphamide, and rituximab, remain the mainstay of therapy, though many patients fail to achieve remission or experience significant adverse effects. Moreover, the complex and multifactorial nature of GN pathogenesis calls for more refined therapeutic approaches. In recent years, multitarget therapies-combining different immunosuppressive agents targeting distinct immune pathways-have emerged as promising alternatives. Evidence suggests that multitarget therapy may offer superior outcomes compared to standard treatments. Despite early success, further studies are needed to optimize these regimens, reduce toxicity, and extend benefits to a broader range of GN patients. The development of personalized, biomarker-driven treatments, potentially leveraging innovative drug delivery systems and targeted biologics, holds promise for transforming GN care in the future.
- Klíčová slova
- cyclophosphamide, glomerulonephritis, multitarget therapy, rituximab,
- Publikační typ
- časopisecké články MeSH
Microbiology is a key component of modern science, significantly influencing various fields, such as agriculture, medicine, and environmental management, particularly through the One Health approach, which recognizes the interconnectedness of human, animal, and environmental health [...].
In addition to its fruit, the sweet cherry (Prunus avium L.) has other parts that can be used as a source of compounds with beneficial biological activity. The content of these metabolites is affected by different inner and outer factors, often as a response to plant defense against various stresses. Leaves of two P. avium. genotypes, Kordia and Regina, grafted on the same rootstock, were analyzed from trees grown in orchards in six different phenological phases for two years. The content of several groups of phenolic compounds, lipid peroxidation, antioxidant activity of the extracts, and enzyme activity were observed via colorimetric methods on a UV/Vis spectrophotometer. The obtained data showed that the content of metabolites and other parameters in these two genotypes are dependent on the term of harvest, as well as environmental conditions, mainly temperature, but sunshine duration and rainfall also had a certain effect on the compounds in the leaves of Kordia and Regina. Even though the differences between these genotypes were not always significant, it is important to consider the right time to harvest the leaves of the sweet cherry, as their content could vary as a result of the reaction to various other conditions and could reflect the resistance of the chosen genotype.
- Klíčová slova
- abiotic stress, enzymatic activity, phenology, secondary metabolites, sweet cherry,
- Publikační typ
- časopisecké články MeSH
Yeasts are the usual contaminants in fruit juices and other beverages, responsible for the decrease in the quality and shelf-life of such products. Preservatives are principally added to these beverages to enhance their shelf-life. With the increasing consumer concern towards chemical food additives, plant-derived antimicrobials have attracted the attention of researchers as efficient and safer anti-yeast agents. However, the methods currently used for determining their anti-yeast activity are time- and material-consuming. In this study, the anti-yeast effect of plant phenolic compounds in apple and orange juice food models using microtiter plates has been evaluated in order to validate the modified broth microdilution method for screening the antimicrobial activity of juice preservative agents. Among the twelve compounds tested, four showed a significant in vitro growth-inhibitory effect against all tested yeasts (Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Zygosaccharomyces rouxii) in both orange and apple juices. The best results were obtained for pterostilbene in both juices with minimum inhibitory concentrations (MICs) ranging from 32 to 128 μg/mL. Other compounds, namely oxyresveratrol, piceatannol, and ferulic acid, exhibited moderate inhibitory effects with MICs of 256-512 μg/mL. Furthermore, the results indicated that differences in the chemical structures of the compounds tested significantly affected the level of yeast inhibition, whereas stilbenes with methoxy and hydroxy groups produced the strongest effect. Furthermore, the innovative assay developed in this study can be used for screening the anti-yeast activity of juice preservative agents because it saves preparatory and analysis time, laboratory supplies, and manpower in comparison to the methods commonly used.
- Klíčová slova
- Saccharomyces cerevisiae, Zygosaccharomyces, antifungal, food safety, natural preservatives, plant compounds,
- Publikační typ
- časopisecké články MeSH
Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.
- Klíčová slova
- PHB, Synechocystis, cell size, continuous illumination, day/night cycle, glycogen,
- Publikační typ
- časopisecké články MeSH
Enterococci are a group of microorganisms that have a controversial position from some scientific points of view. The species of the greatest clinical importance are E. faecalis and E. faecium, which are common agents of nosocomial infections. However, enterococci also have important applications in the dairy industry, as they are used as non-starter lactic acid bacteria (NSLAB) in a variety of cheeses, especially artisanal cheeses. The aim of this study was to determine the presence of representatives from the Enterococcus genus using PCR and MALDI-TOF MS methods on samples of raw milk, processing environment swabs, and cheese from four different artisanal dairy plants in Slovakia. Among the 136 isolates of enterococci, 9 species of genus Enterococci (E. faecalis, E. faecium, E. durans, E. devriesi, E. hirae, E. italicus, E. casseliflavus, E. malodoratus, and E. gallinarum) were identified and were tested for their antimicrobial resistance (AMR) to 8 antibiotics (amoxicillin, penicillin, ampicillin, erythromycin, levofloxacin, vancomycin, rifampicin, and tetracycline); most of them were resistant to rifampicin (35.3%), ampicillin (22.8%), and tetracycline (19.9%). A PCR analysis of vanA (4.41%) and tetM (14.71%) revealed that antimicrobial resistance genes were present in not only phenotypic resistant isolates of enterococci but also susceptible isolates. The investigation of antimicrobial resistance in enterococci during the cheesemaking process can be a source of valuable information for public health in the concept of "One Health".
- Klíčová slova
- MALDI-TOF MS, PCR, enterococcal isolates, processing environment, silent genes,
- Publikační typ
- časopisecké články MeSH
This paper describes the in situ spores of the Calamospora type, macerated from sixty-one specimens of calamitean cones belonging to sixteen species of genera, such as the Palaeostachya, Macrostachya, Calamostachys, and Huttonia from the Pennsylvanian Czech Republic period, specifically from the Moscovian/Kasimovian ages (i.e., Duckmantian-Stephanian). The in situ spores were compared to twenty dispersed species of Calamospora. The majority of spores were microspores; however, some cones yielded both micro- and megaspores. Morphological variations of the in situ spores, including the diameter, labrum, contact area, ontogenetic stages, and secondary folds of the exine, are described, including their importance for the classification of calamospores. The relationships of Elaterites, Pteroretis, Vestispora, and some monopseudosaccate spores are discussed. All Paleozoic Calamospora-producing parent plants are summarized.
- Klíčová slova
- Calamospora, Pennsylvanian, calamites, in situ spores, sphenophytes,
- Publikační typ
- časopisecké články MeSH
Our research has developed a highly sensitive and simple assay to detect small amounts of animal and human biological material in less than 40 min. The handheld SaLux19 device developed at the Max Planck Institute of Experimental Medicine in Göttingen, Germany, was used to validate our concept. The proposed system uses isothermal amplification of DNA in a rapid assay format. Our results show that the assay can detect Sus scrofa nucleic acids with very high sensitivity and specificity. This detection system has potential for forensic scenarios.
- Klíčová slova
- LAMP, SaLux19, Sus scrofa (wild boar/pig), point-of-care testing, species identification,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Successful conversion from insulin therapy to glucagon-like peptide 1 receptor agonist (GLP-1RA) with basal insulin in well-controlled patients has already been demonstrated. However, the data concerning individuals with poor glycaemic control are scarce. The aim of this work was to assess the success rate of insulin therapy to liraglutide transition in poorly controlled diabetes in a real-world clinical setting and to define predictors of success. We are the first to present the method of a fasting test as a way to identify the patients at higher risk of failure after treatment de-intensification. METHODS: The retrospective observational study analyzed data of 62 poorly controlled obese diabetic patients on high-dose insulin therapy, who were subjected to a 72 h fasting test during hospitalization and subsequently switched to liraglutide ± basal insulin therapy. During the fasting, all antidiabetic treatment was discontinued. Patients were classified as responders if they remained on GLP-1RA treatment after 12 months. Non-responders restarted the basal-bolus insulin (BBI) regimen. Development of glycated hemoglobin (HbA1c) and body weight in both groups, alongside with parameters associated with the higher risk of return to the BBI regimen, were analyzed. RESULTS: A total of 71% of patients were switched successfully (=responders). Responders had more significant improvement in HbA1c (-6.4 ± 19.7 vs. -3.4 ± 22.9 mmol/mol) and weight loss (-4.6 ± 7.1 vs. -2.5 ± 4.0). Statistically significant difference between groups was found in initial HbA1c (75.6 ± 17.9 vs. 90.5 ± 23.6; p = 0.04), total daily dose of insulin (67.6 ± 36.4 vs. 90.8 ± 32.4; p = 0.02), and mean glycaemia during the fasting test (6.9 ± 1.7 vs. 8.6 ± 2.2 mmol/L; p < 0.01). CONCLUSIONS: This study confirms that therapy de-intensification in poorly controlled patients with a BBI regimen is possible. Higher baseline HbA1c, total daily insulin dose, and mean glucose during fasting test are negative predictive factors of successful therapy de-escalation.
- Klíčová slova
- bolus-basal insulin therapy, fasting test, glucagon-like peptide 1 analogues, liraglutide, therapy de-intensification, type 2 diabetes,
- Publikační typ
- časopisecké články MeSH
The paraspinal muscles of the cervical, thoracic, and lumbar spine are important pain generators because muscle strains or myofascial pain syndrome caused by trigger points are common during clinical practice. Ultrasonography is the most convenient imaging tool for evaluating these muscles due to its advantages, such as providing good delineation of soft tissues, easy accessibility, and zero radiation. Additionally, ultrasound can serve as a useful guiding tool for paraspinal muscle intervention to prevent inadvertent injuries to vital axial neurovascular structures. This pictorial essay presents ultrasound scanning protocols for the paraspinal and other associated muscles as well as a discussion of their clinical relevance. Axial magnetic resonance imaging has also been used to elucidate reciprocal anatomy. In conclusion, ultrasound imaging proves to be a valuable tool that facilitates the differentiation of individual paraspinal muscles. This capability significantly enhances the precision of interventions designed to address myofascial pain syndrome.
- Klíčová slova
- lumbar, neck, pain, sonography, trunk,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH