The aim of this study was to compare radiosurgical treatment plan quality of a linear accelerator with Leksell Gamma Knife (LGK) for pituitary adenoma irradiation. Thirty pituitary adenoma patients were evaluated in this study. Treatment plans were prepared on LGK and stereotactic linear accelerator Varian TrueBeam STx. Volumetric Modulated Arc Therapy (VMAT) plans (21 plans with 2 coplanar arcs and 9 plans with 4 non-coplanar arcs) were calculated for linear accelerator. All the plans were evaluated in terms of conformity, selectivity, gradient index and organ at risk (OAR) sparing. VMAT produced dosimetrically comparable treatment plans to LGK regarding conformity and selectivity (New Conformity Index (NCI): 1.76 ± 0.65 for 4 arc VMAT, 2.33 ± 1,16 for 2 arc VMAT and 1.96 ± 0.71 for LGK; Selectivity Index (SI): 0.63 ± 0.16 for 4 arc VMAT, 0.51 ± 0.16 for 2 arc VMAT and 0.58 ± 0.17 for LGK). Gradient index (GI) was superior for LGK plans (GI: 2.74 ± 0.20 for LGK and 5.28 ± 2.29 for 4 arc VMAT). OAR sparing for optics, brainstem, and hypophysis was similar for both modalities while target volume coverage was maintained the same. Finally, treatment time resulted in favor of VMAT plans (in this study VMAT plans were almost 5 times faster than LGK treatment regarding beam on time). According to the results of this study stereotactic linear accelerator with VMAT treatment could be used as a reasonable alternative to LGK for pituitary adenoma radiosurgery but only if the same head fixation method accuracy and target volume delineation are maintained for both modalities.
- Klíčová slova
- Leksell Gamma Knife, Pituitary adenoma, Stereotactic radiosurgery, Volumetric modulated arc therapy,
- MeSH
- částice - urychlovače MeSH
- celková dávka radioterapie MeSH
- lidé MeSH
- nádory hypofýzy * radioterapie MeSH
- nádory mozku * chirurgie MeSH
- plánování radioterapie pomocí počítače MeSH
- radiochirurgie * MeSH
- radioterapie s modulovanou intenzitou * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of this study is to evaluate the dosimetric impact of the margin on the multileaf collimator-based dynamic tumor tracking plan. Furthermore, an equivalent setup margin (EM) of the tracking plan was determined according to the gated plan. A 4-dimensional extended cardiac-torso was used to create 9 digital phantom datasets of different tumor diameters (TDs) of 1, 3, and 5 cm and motion ranges (MRs) of 1, 2, and 3 cm. For each dataset, respiratory gating (30% to 70% phase) and tumor tracking treatment plans were prepared using 8-field 3-dimensional conformal radiation therapy by 4-dimensional dose calculation. The total lung V20 was calculated to evaluate the dosimetric impact for each case and to estimate the EM with the same impact on lung V20 obtained with the gating plan with a setup margin of 5 mm. The EMs for {TD = 1 cm, MR = 1 cm}, {TD = 1 cm, MR = 2 cm}, and {TD = 1 cm, MR = 3 cm} were estimated as 5.00, 4.16, and 4.24 mm, respectively. The EMs for {TD = 5 cm, MR = 1 cm}, {TD = 5 cm, MR = 2 cm}, and {TD = 5 cm, MR = 3 cm} were estimated as 4.24 mm, 6.35 mm, and 7.49 mm, respectively. This result showed that with a larger MR, the EM was found to be increased. In addition, with a larger TD, the EM became smaller. Our result showing the EMs provided the desired accuracy for multileaf collimator-based dynamic tumor tracking radiotherapy.
- Klíčová slova
- Dynamic tumor tracking radiotherapy, Four-dimensional dose calculation, Radiotherapy, Setup margin, Stereotactic body radiotherapy,
- MeSH
- celková dávka radioterapie * MeSH
- fantomy radiodiagnostické MeSH
- konformní radioterapie metody MeSH
- lidé MeSH
- nádory plic patologie radioterapie MeSH
- plánování radioterapie pomocí počítače MeSH
- pohyb těles MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH