UNLABELLED: Cytokinins (CKs) are involved in several developmental stages in the life-cycle of plants. The CK content in plants and their respective organs are susceptible to changes under different environmental conditions. In the current study, we profiled the CK content in the above and underground organs of three legumes (Lessertia frutescens, Mucuna pruriens and Pisum sativum) grown in soils collected from four locations (Ashburton, Bergville, Hluhluwe and Izingolweni) in KwaZulu-Natal province, South Africa. The quantified CK contents in the three legumes were categorized on the basis of their side chains (isoprenoid, aromatic and furfural) and modifications (e.g. free bases and glucosides). Legume and soil types as well as their interaction significantly influenced the concentrations of CKs. Lessertia frutescens, Mucuna pruriens and Pisum sativum had CK content that ranged from 124-653, 170-670 and 69-595 pmol/g DW, respectively. Substantial quantity (> 600 pmol/g DW) of CK were observed in plants grown in Bergville (above-ground part of Lessertia frutescens) and Izingolweni (underground part of Mucuna pruriens) soils. A total of 28 CK derivatives observed in the legumes comprised of isoprenoid (22), aromatic (5) and furfural (1) side-chain CKs. However, the 16 CK derivatives in Mucuna pruriens were isoprenoid-type based on the side-chain. Generally, a higher ratio of cis-zeatin (cZ) relative to the trans-zeatin (tZ) was evident in the above-ground part of Lessertia frutescens and Pisum sativum for the four soil treatments. In terms of functional and physiological importance of the CKs, the free bases (active form) and ribosides (translocation form) were the most abundant CK in Lessertia frutescens and Pisum sativum. However, N-glucoside, a deactivation/detoxicification product was the most dominant CK in Mucuna pruriens from Hluhluwe and Izingolweni soils. The total CKs in the underground parts of the legumes had a positive significant correlation with the total phosphorus and nitrogen content in the plant as well as the soil nitrogen. Overall, the CK profiles of the legumes were strongly influenced by the soil types. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01021-2.
- Klíčová slova
- Biomass, Fabaceae, Nitrogen fixation, Nodulation, Phytohormones, Rhizobia,
- Publikační typ
- časopisecké články MeSH
Nuclear factor-Ys (NF-Ys) were previously shown to have important regulatory impacts in different developmental and physiological process. However, in barley the function of the NF-Y genes at system levels is not well known. To identify barley NF-Ys, Arabidopsis and wheat NF-Y protein sequences were retrieved and the BLAST program along with the hidden Markov model were used. Multiple sequence alignments of identified NF-Ys were constructed using ClustalW. Expression patterns of the NF-Ys at different physiological and developmental conditions were also surveyed based on microarray datasets in public databases and subsequently co-expression network were constructed. Validation of in silico expression analysis was performed by real-time qPCR under salt stress condition. In total, 23 barley NF-Ys (8 NF-YA, 11 NF-YB and 4 NF-YC) were identified. Based on the sequence homology, the subunits of the NF-Y complex were divided into three to five groups. Structural analysis highlighted the conserved domains of HvNF-YA, HvNF-YB and HvNF-YC. Co-expression network analysis indicated the potential functions of HvNF-Ys in photosynthesis, starch biosynthesis and osmotic stress tolerance. The results of qRT-PCR also confirmed the HvNF-Ys roles in adaptation responses of barley to salt stress. We identified some potential candidate genes which could be used for improvements of cereals tolerance to salinity stress.
- Klíčová slova
- Co-expression network, Nuclear factor Y, Phylogeny, Salt stress, qRT-PCR,
- Publikační typ
- časopisecké články MeSH