In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.
- MeSH
- oxid uhličitý chemie MeSH
- ozon chemie MeSH
- půda chemie MeSH
- ultrafialové záření * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- oxid uhličitý MeSH
- ozon MeSH
- půda MeSH
Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant-degrading microorganisms via root exudation and plant species-specific composition of the exudates. In this work, we review current knowledge of enantiomers of low-molecular-weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L- versus D-enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant-degrading microorganisms were not included in these studies. D-enantiomers of aliphatic organic acids and amino acids or L-enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L-enantiomers (organic acids and amino acids) or D-carbohydrates. Determining the ratio of L- versus D-enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research.
- Klíčová slova
- chelation, degradation, enantiomer, pollutant, rhizosphere, root exudate, sorption,
- MeSH
- biodegradace MeSH
- komplexní sloučeniny chemie MeSH
- kořeny rostlin mikrobiologie MeSH
- maláty chemie MeSH
- metabolismus sacharidů MeSH
- organické látky * MeSH
- stereoizomerie MeSH
- tartaráty chemie MeSH
- těžké kovy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- komplexní sloučeniny MeSH
- maláty MeSH
- malic acid MeSH Prohlížeč
- organické látky * MeSH
- tartaráty MeSH
- tartaric acid MeSH Prohlížeč
- těžké kovy MeSH
Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L- and D-enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L- versus the D-enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues.
- Klíčová slova
- enantiomer, interactions, medicine, microorganisms, pipecolic acid, plants, soil,
- MeSH
- kyseliny pipekolové chemická syntéza chemie klasifikace MeSH
- rostliny chemie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny pipekolové MeSH
- pipecolic acid MeSH Prohlížeč
Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.
- MeSH
- kyseliny analýza MeSH
- mastné kyseliny analýza MeSH
- půda chemie MeSH
- sacharidy analýza MeSH
- těkavé organické sloučeniny analýza MeSH
- těžké kovy analýza MeSH
- vitaminy analýza MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny MeSH
- mastné kyseliny MeSH
- půda MeSH
- sacharidy MeSH
- těkavé organické sloučeniny MeSH
- těžké kovy MeSH
- vitaminy MeSH
The aim of this study is to present a new method for determining the root-derived extracellular acid phosphomonoesterase (EAPM) activity fraction within the total EAPM activity of soil. EAPM activity was determined for roots, organic and mineral soil. Samples were collected using paired PVC cylinders, inserted to a depth of 15 cm, within seven selected forest stands. Root-derived EAPM formed between 4 and18% of the total EAPM activity of soil from forests of differing maturity. A new approach, presented in this work, enables separation of root-derived EAPM activity from total soil EAPM. Separation of root-derived EAPM from soil provides a better understanding of its role in P-cycling in terrestrial ecosystems. The method presented in this work is a first step towards the separation of root- and microbe-derived EAPM in soils, which are thought to possess different kinetic properties and different sensitivity to environmental change.
- MeSH
- ekosystém * MeSH
- fosfodiesterasa I analýza MeSH
- kořeny rostlin enzymologie MeSH
- půda chemie MeSH
- stromy enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- fosfodiesterasa I MeSH
- půda MeSH