BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.
- Klíčová slova
- Acute respiratory distress syndrome, Body position, Coronavirus disease, Mechanical ventilation, Positive end-expiratory pressure, Ventilator-induced lung injury,
- MeSH
- atelektáza prevence a kontrola terapie MeSH
- COVID-19 terapie MeSH
- dospělí MeSH
- elektrická impedance MeSH
- lidé středního věku MeSH
- lidé MeSH
- polohování pacienta metody MeSH
- poškození plic mechanickou ventilací prevence a kontrola MeSH
- prospektivní studie MeSH
- SARS-CoV-2 MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- syndrom dechové tísně terapie MeSH
- umělé dýchání metody MeSH
- ventilace umělá s výdechovým přetlakem metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
We introduce an ergonomic positioning for sonographic scanning of elbow joint where the patient is lying semisupine on the examination bed. This is in contrast with the conventional positioning where the patient is sitting on the edge of the bed or across the table on a chair. Our proposed positioning is more comfortable for both the patient and ultrasound practitioner. It also allows immediate ultrasound-guided injections with lesser risk regarding a vasovagal syncope of the patient.
- MeSH
- lidé MeSH
- loketní kloub diagnostické zobrazování MeSH
- nemoci kloubů diagnostické zobrazování MeSH
- polohování pacienta metody MeSH
- ultrasonografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE: To assess the long-term mechanical stability and accuracy of the patient positioning system (PPS) of the Leksell Gamma Knife(®) Perfexion™ (LGK PFX). METHODS: The mechanical stability of the PPS of the LGK PFX was evaluated using measurements obtained between September 2007 and June 2011. Three methods were employed to measure the deviation of the coincidence of the radiological focus point (RFP) and the PPS calibration center point (CCP). In the first method, the onsite diode test tool with single diode detector was used together with the 4 mm collimator on a daily basis. In the second method, a service diode test tool with three diode detectors was used biannually at the time of the routine preventive maintenance. The test performed with the service diode test tool measured the deviations for all three collimators 4, 8, and 16 mm and also for three different positions of the PPS. The third method employed the conventional film pin-prick method. This test was performed annually for the 4 mm collimator at the time of the routine annual QA. To estimate the effect of the patient weight on the performance of the PPS, the focus precision tests were also conducted with varying weights on the PPS using a set of lead bricks. RESULTS: The average deviations measured from the 641 daily focus precision tests were 0.1 ± 0.1, 0.0 ± 0.0, and 0.0 ± 0.0 mm, respectively, for the 4 mm collimator in the X (left/right of the patient), Y (anterior/posterior of the patient), and Z (superior/inferior of the patient) directions. The average of the total radial deviations as measured during ten semiannual measurements with the service diode test tool were 0.070 ± 0.029, 0.060 ± 0.022, and 0.103 ± 0.028 mm, respectively for the central, long, and short diodes for the 4 mm collimator. Similarly, the average total radial deviations measured during the semiannual measurements for the 4, 8, and 16 mm collimators and using the central diode were 0.070 ± 0.029, 0.097 ± 0.025, 0.159 ± 0.028 mm, respectively. The average values of the deviations as obtained from the five annual film pin-prick tests for the 4 mm collimator were 0.10 ± 0.06, 0.06 ± 0.09, and 0.03 ± 0.03 mm for the X, Y, Z stereotactic directions, respectively. Only a minor change was observed in the total radial deviations of the PPS as a function of the simulated patient weight up to 202 kg on the PPS. CONCLUSIONS: Excellent long-term mechanical stability and high accuracy was observed for the PPS of the LGK PFX. No PPS recalibration or any adjustment in the PPS was needed during the monitored period of time. Similarly, the weight on the PPS did not cause any significant disturbance in the performance of the PPS for up to 202 kg simulated patient weight.
- MeSH
- analýza selhání vybavení přístrojové vybavení MeSH
- celková dávka radioterapie MeSH
- design vybavení MeSH
- filmová dozimetrie metody MeSH
- kalibrace MeSH
- lidé MeSH
- olovo MeSH
- počítačová simulace MeSH
- polohování pacienta metody MeSH
- radiochirurgie metody MeSH
- reprodukovatelnost výsledků MeSH
- řízení kvality MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- olovo MeSH