We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
- Klíčová slova
- Click-iT EdU, Mesenchymal stem cells, Pancreatic islets, Revascularization, Transplantation,
- MeSH
- decelularizovaná extracelulární matrix MeSH
- endoteliální buňky MeSH
- fyziologická neovaskularizace * MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- Langerhansovy ostrůvky * imunologie MeSH
- lidé MeSH
- mezenchymální kmenové buňky * MeSH
- pankreas MeSH
- transplantace Langerhansových ostrůvků * metody MeSH
- transplantace mezenchymálních kmenových buněk * metody MeSH
- tuková tkáň * cytologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- decelularizovaná extracelulární matrix MeSH
We previously developed a deep learning-based web service (IsletNet) for an automated counting of isolated pancreatic islets. The neural network training is limited by the absent consensus on the ground truth annotations. Here, we present a platform (IsletSwipe) for an exchange of graphical opinions among experts to facilitate the consensus formation. The platform consists of a web interface and a mobile application. In a small pilot study, we demonstrate the functionalities and the use case scenarios of the platform. Nine experts from three centers validated the drawing tools, tested precision and consistency of the expert contour drawing, and evaluated user experience. Eight experts from two centers proceeded to evaluate additional images to demonstrate the following two use case scenarios. The Validation scenario involves an automated selection of images and islets for the expert scrutiny. It is scalable (more experts, images, and islets may readily be added) and can be applied to independent validation of islet contours from various sources. The Inquiry scenario serves the ground truth generating expert in seeking assistance from peers to achieve consensus on challenging cases during the preparation for IsletNet training. This scenario is limited to a small number of manually selected images and islets. The experts gained an opportunity to influence IsletNet training and to compare other experts' opinions with their own. The ground truth-generating expert obtained feedback for future IsletNet training. IsletSwipe is a suitable tool for the consensus finding. Experts from additional centers are welcome to participate.
- Klíčová slova
- Consensus building, deep learning, expert opinion exchange, ground truth, human islets, image annotation, islet counting, islet graft quality control, islet isolation, islet transplantation, mobile application, user experience,
- MeSH
- Langerhansovy ostrůvky * MeSH
- neuronové sítě MeSH
- pilotní projekty MeSH
- transplantace Langerhansových ostrůvků * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
- MeSH
- aktivace transkripce MeSH
- beta-buňky * MeSH
- buněčná diferenciace genetika MeSH
- endokrinní buňky * MeSH
- transkripční faktory MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transkripční faktory MeSH
BACKGROUND: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS: Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
- Klíčová slova
- Epigenetic histone modification, Pancreas development, Pancreatic endocrine cells, Transcriptome,
- Publikační typ
- časopisecké články MeSH
Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic β-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.
- Klíčová slova
- MRI, gadolinium fluoride, luminescence, nanoparticles, pancreatic islets, β-cells,
- MeSH
- krysa rodu Rattus MeSH
- Langerhansovy ostrůvky * diagnostické zobrazování MeSH
- luminiscence MeSH
- magnetická rezonanční tomografie metody MeSH
- maleinanhydridy MeSH
- myši MeSH
- nanočástice * chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- maleinanhydridy MeSH
BACKGROUND: Islet transplantation represents an established therapeutic option for people with type 1 diabetes who have hypoglycemia unawareness syndrome and frequent problematic hypoglycemic episodes when other methods comprising diabetes education and use of technological support fail. Because the current standard method of islet infusion into the liver has some limitations, novel approaches are under investigation. METHODS: We report our first results with 2 cases of islet transplantation into an omental pouch using a biocompatible plasma-fibrin gel. The recipients received 12,350 and 5,350 islet equivalents per kilogram that were mixed with autologous plasma, seeded during a laparoscopic procedure on the omentum, overlaid with human thrombin solution, and fixed by flapping the omentum over. RESULTS: During a 9-month follow-up, neither patient experienced any moderate or severe hypoglycemia. Their glucose control significantly improved, insulin dose decreased by approximately 50%, and C-peptide at 1 year was 0.22 and 0.14 pmol/mL, respectively. The postoperative course was uneventful, but C-peptide production in the first patient progressively declined at 1 year and hypoglycemic episodes recurred. CONCLUSIONS: Though the results for these first 2 cases are not fully satisfactory, we have demonstrated the feasibility, safety, and ability of this novel method to restore insulin production. Further refinements to improve immediate islet survival seem necessary.
- MeSH
- biomedicínský výzkum * MeSH
- C-peptid MeSH
- diabetes mellitus 1. typu * farmakoterapie chirurgie MeSH
- hypoglykemie * farmakoterapie MeSH
- hypoglykemika terapeutické užití MeSH
- inzulin terapeutické užití MeSH
- krevní glukóza MeSH
- Langerhansovy ostrůvky * MeSH
- lidé MeSH
- omentum chirurgie MeSH
- transplantace Langerhansových ostrůvků * škodlivé účinky metody MeSH
- trombin terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C-peptid MeSH
- hypoglykemika MeSH
- inzulin MeSH
- krevní glukóza MeSH
- trombin MeSH
BACKGROUND: Transplantation of pancreatic islets into subcutaneous cavities in diabetic rats may be as or even more effective than transplantation into the portal vein. Identifying the optimal timing of the individual steps in this procedure is critical. METHODS: Macroporous scaffolds were placed in the subcutaneous tissue of diabetic male Lewis rats for 7 or 28 d and the healing of the tissue inside the scaffolds was monitored. A marginal syngeneic graft comprising 4 islets/g of recipient body weight was transplanted at the best timing focusing mainly on vascularization. Recipients were monitored for blood glucose levels and tolerance tests. Histological examination was performed in all implanted scaffolds. The presence of individual endocrine cells was analyzed in detail. RESULTS: Blood glucose levels remained within the physiological range in all recipients until the end of experiment as well as body weight increase. Coefficients of glucose assimilation were normal or slightly reduced with no statistically significant differences between the groups 40 and 80 d after transplantation. Histological analysis revealed round viable islets in the liver similar to those in pancreas, but alpha cells practically disappeared, whereas islets in the scaffolds formed clusters of cells surrounded by rich vascular network and the alpha cells remained partially preserved. CONCLUSIONS: Subcutaneous transplantation of pancreatic islets is considerably less invasive but comparably efficient as commonly used islet transplantation into the portal vein. In consideration of alpha and beta cell ratio, the artificial subcutaneous cavities represent a promising site for future islet transplantation therapy.
- MeSH
- experimentální diabetes mellitus * chirurgie MeSH
- krevní glukóza MeSH
- krysa rodu Rattus MeSH
- Langerhansovy ostrůvky * krevní zásobení chirurgie MeSH
- potkani inbrední LEW MeSH
- subkutánní tkáň MeSH
- transplantace Langerhansových ostrůvků * metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- krevní glukóza MeSH
PURPOSE: The liver is the most widely used site for pancreatic islet transplantation. However, several site-specific limitations impair functional success, with instant blood-mediated inflammatory reaction being the most important. The aim of this study was to develop a preclinical model for placement of the islet graft into a highly vascularized omental flap using a fibrin gel. For this purpose, we tested islet viability by bioluminescence imaging (BLI). PROCEDURES: Pancreatic islets were isolated from luciferase-positive and luciferase-negative rats, mixed at a 1:1 ratio, placed into a plasma-thrombin bioscaffold, and transplanted in standard (10 pancreatic islets/g wt; n = 10) and marginal (4 pancreatic islets/g wt; n = 7) numbers into the omentums of syngeneic diabetic animals. For the control, 4 pancreatic islets/g were transplanted into the liver using the standard procedure (n = 7). Graft viability was tested by bioluminescence at days 14, 30, 60, and 90 post transplant. Glucose levels, intravenous glucose tolerance, and serum C-peptide were assessed regularly. RESULTS: Nonfasting glucose levels < 10 mmol/l were restored in all animals. While islet viability in the omentum was clearly detected by stable luminescence signals throughout the whole study period, no signals were detected from islets transplanted into the liver. The bioluminescence signals were highly correlated with stimulated C-peptide levels detected at 80 days post transplant. Glucose tolerance did not differ among the 3 groups. CONCLUSIONS: We successfully tested a preclinical model of islet transplantation into the greater omentum using a biocompatible scaffold made from autologous plasma and human thrombin. Both standard and marginal pancreatic islet numbers in a gel-form bioscaffold placed in the omentum restored glucose homeostasis in recipients with diabetes. Bioluminescence was shown promising as a direct proof of islet viability.
- Klíčová slova
- Bioluminescence, Omentum, Pancreatic islet transplantation, Type 1 diabetes,
- MeSH
- krysa rodu Rattus MeSH
- Langerhansovy ostrůvky diagnostické zobrazování MeSH
- luminiscenční měření metody MeSH
- molekulární zobrazování metody MeSH
- omentum diagnostické zobrazování MeSH
- přežívání štěpu fyziologie MeSH
- transplantace Langerhansových ostrůvků * MeSH
- viabilita buněk fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.
- Klíčová slova
- NEUROD1, genetic mutation, mouse model, pancreatic development, transcriptional network,
- MeSH
- beta-buňky cytologie metabolismus MeSH
- buněčná diferenciace MeSH
- buněčný rodokmen MeSH
- diabetes mellitus genetika MeSH
- inzulin metabolismus MeSH
- Langerhansovy ostrůvky cytologie metabolismus ultrastruktura MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- novorozená zvířata MeSH
- pankreas cytologie embryologie MeSH
- proliferace buněk MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inzulin MeSH
- Neurod1 protein, mouse MeSH Prohlížeč
- transkripční faktory bHLH MeSH