In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol) terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles, designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration (1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition, Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure regulation, vascular function, and RBCs in hypertensive rats.
- Klíčová slova
- alendronate, cardiovascular, magnetic, nanoparticles, red blood cells,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The brain stem contains important nuclei that control cardiovascular function via the sympathetic nervous system (SNS), which is strongly influenced by nitric oxide. Its biological activity is also largely determined by oxygen free radicals. Despite many experimental studies, the role of AT1R-NAD(P)H oxidase-superoxide pathway in NO-deficiency is not yet sufficiently clarified. We determined changes in free radical signaling and antioxidant and detoxification response in the brain stem of young and adult Wistar rats during chronic administration of exogenous NO inhibitors. METHODS: Young (4 weeks) and adult (10 weeks) Wistar rats were treated with 7-nitroindazole (7-NI group, 10 mg/kg/day), a specific nNOS inhibitor, with NG-nitro-L-arginine-methyl ester (L-NAME group, 50 mg/kg/day), a nonspecific NOS inhibitor, and with drinking water (Control group) during 6 weeks. Systolic blood pressure was measured by non-invasive plethysmography. Expression of genes (AT1R, AT2R, p22phox, SOD and NOS isoforms, HO-1, MDR1a, housekeeper GAPDH) was identified by real-time PCR. NOS activity was detected by conversion of [3H]-L-arginine to [3H]-L-citrulline and SOD activity was measured using UV VIS spectroscopy. RESULTS: We observed a blood pressure elevation and decrease in NOS activity only after L-NAME application in both age groups. Gene expression of nNOS (youngs) and eNOS (adults) in the brain stem decreased after both inhibitors. The radical signaling pathway triggered by AT1R and p22phox was elevated in L-NAME adults, but not in young rats. Moreover, L-NAME-induced NOS inhibition increased antioxidant response, as indicated by the observed elevation of mRNA SOD3, HO-1, AT2R and MDR1a in adult rats. 7-NI did not have a significant effect on AT1R-NADPH oxidase-superoxide pathway, yet it affected antioxidant response of mRNA expression of SOD1 and stimulated total activity of SOD in young rats and mRNA expression of AT2R in adult rats. CONCLUSION: Our results show that chronic NOS inhibition by two different NOS inhibitors has age-dependent effect on radical signaling and antioxidant/detoxificant response in Wistar rats. While 7-NI had neuroprotective effect in the brain stem of young Wistar rats, L-NAME- induced NOS inhibition evoked activation of AT1R-NAD(P)H oxidase pathway in adult Wistar rats. Triggering of the radical pathway was followed by activation of protective compensation mechanism at the gene expression level.
- Klíčová slova
- Antioxidant response, Brain stem, NOS inhibition, Radical signaling,
- MeSH
- antioxidancia metabolismus MeSH
- indazoly farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu Rattus MeSH
- metabolická inaktivace * MeSH
- mozkový kmen účinky léků metabolismus MeSH
- NG-nitroargininmethylester farmakologie MeSH
- oxid dusnatý nedostatek MeSH
- potkani Wistar MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory MeSH
- věkové faktory MeSH
- volné radikály metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-nitroindazole MeSH Prohlížeč
- antioxidancia MeSH
- indazoly MeSH
- inhibitory enzymů MeSH
- NG-nitroargininmethylester MeSH
- oxid dusnatý MeSH
- synthasa oxidu dusnatého MeSH
- volné radikály MeSH