Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
- Klíčová slova
- Fatty acids, Lipidomics, Lipids, Macroalgae, Microalgae, Plants, Seaweeds,
- MeSH
- lipidomika * metody MeSH
- lipidy analýza chemie MeSH
- metabolismus lipidů MeSH
- rostliny * metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lipidy MeSH
The monomeric photosystem I-light-harvesting antenna complex I (PSI-LHCI) supercomplex from the extremophilic red alga Cyanidioschyzon merolae represents an intermediate evolutionary link between the cyanobacterial PSI reaction center and its green algal/higher plant counterpart. We show that the C. merolae PSI-LHCI supercomplex is characterized by robustness in various extreme conditions. By a combination of biochemical, spectroscopic, mass spectrometry, and electron microscopy/single particle analyses, we dissected three molecular mechanisms underlying the inherent robustness of the C. merolae PSI-LHCI supercomplex: (1) the accumulation of photoprotective zeaxanthin in the LHCI antenna and the PSI reaction center; (2) structural remodeling of the LHCI antenna and adjustment of the effective absorption cross section; and (3) dynamic readjustment of the stoichiometry of the two PSI-LHCI isomers and changes in the oligomeric state of the PSI-LHCI supercomplex, accompanied by dissociation of the PsaK core subunit. We show that the largest low light-treated C. merolae PSI-LHCI supercomplex can bind up to eight Lhcr antenna subunits, which are organized as two rows on the PsaF/PsaJ side of the core complex. Under our experimental conditions, we found no evidence of functional coupling of the phycobilisomes with the PSI-LHCI supercomplex purified from various light conditions, suggesting that the putative association of this antenna with the PSI supercomplex is absent or may be lost during the purification procedure.
- MeSH
- biologická adaptace MeSH
- chlorofyl metabolismus MeSH
- cirkulární dichroismus MeSH
- fluorescenční spektrometrie MeSH
- fotosystém I (proteinový komplex) chemie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- molekulární evoluce MeSH
- Rhodophyta chemie fyziologie MeSH
- sinice chemie fyziologie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- teplota MeSH
- zeaxanthiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém I (proteinový komplex) MeSH
- světlosběrné proteinové komplexy MeSH
- zeaxanthiny MeSH