Bio-dynamic grasshopper optimization algorithm
Dotaz
Zobrazit nápovědu
The imbalance between generated power and load demand often causes unwanted fluctuations in the frequency and tie-line power changes within a power system. To address this issue, a control process known as load frequency control (LFC) is essential. This study aims to optimize the parameters of the LFC controller for a two-area power system that includes a reheat thermal generator and a photovoltaic (PV) power plant. An innovative multi-stage TDn(1 + PI) controller is introduced to reduce the oscillations in frequency and tie-line power changes. This controller combines a tilt-derivative with an N filter (TDn) with a proportional-integral (PI) controller, which improves the system's response by correcting both steady-state errors and the rate of change. This design enhances the stability and speed of dynamic control systems. A new meta-heuristic optimization technique called bio-dynamic grasshopper optimization algorithm (BDGOA) is used for the first time to fine-tune the parameters of the proposed controller and improve its performance. The effectiveness of the controller is evaluated under various load demands, parameter variations, and nonlinearities. Comparisons with other controllers and optimization algorithms show that the BDGOA-TDn(1 + PI) controller significantly reduces overshoot in system frequency and tie-line power changes and achieves faster settling times for these oscillations. Simulation results demonstrate that the BDGOA-TDn(1 + PI) controller significantly outperforms conventional controllers, achieving a reduction in overshoot by 75%, faster settling times by 60%, and a lower integral of time-weighted absolute error by 50% under diverse operating conditions, including parameter variations and nonlinearities such as time delays and governor deadband effects.
This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output. The LADRC, known for managing uncertainties and disturbances, improves the anti-interference capacity of the maximum power point tracking (MPPT) technique and speeds up the system's response rate. Then, in comparison to the traditional method (perturb & observe; P&O) and metaheuristic algorithms (conventional particle swarm optimization; CPSO, grasshopper optimization; GHO, and deterministic PSO; DPSO) through DSEC, the simulations results demonstrate that the combination HHOA-LADRC can successfully track the global maximum peak (GMP) with less fluctuations and a quicker convergence time. Finally, the experimental investigation of the proposed HHOA-LADRC was accomplished with the NI PXIE-1071 Hardware-In-Loop (HIL) prototype. The output findings show that the effectiveness of the provided HHOA-LADRC may approach a value higher than 99%, showed a quicker rate of converging and less oscillations in power through the detection mechanism.
- Klíčová slova
- Dynamic and static environmental conditions, Dynamic control, MPPT, Optimization techniques, Photovoltaic battery chargers,
- Publikační typ
- časopisecké články MeSH