GroIMP Dotaz Zobrazit nápovědu
The non-uniform growth and development of crops within Chinese Solar Greenhouses (CSG) is directly related to the micro-light climate within canopy. In practice, reflective films are used to improve micro-light climate within plant canopy by homogenizing light distribution and so increasing total plant light interception. However, as to our knowledge, the contributions to light distribution within canopy have not been investigated for passive reflector like reflective films. Field experiments dealing with light conditions and growth behavior over time, are complicated to carry out, time-consuming and hard to control, while however, accurate measurements of how reflective films influence the micro-light climate of canopy are an essential step to improve the growth conditions for any crop. Here, we propose a supplementary light strategy using reflective films to improve light distribution within plant canopy. Based on the example of CSG, a 3D greenhouse model including a detailed 3D tomato canopy structure was constructed to simulate the influence of supplementary reflective films to improve micro-light climate. Comparison of measured solar radiation intensity with predicted model data demonstrated that the model could precisely predict light radiation intensity over time with different time points and positions in the greenhouse. A series of reflective film configurations were investigated based on features analysis of light distribution in the tomato canopy on sunny days using the proposed model. The reflective film configuration scheme with the highest impact significantly improved the evenness of horizontal and vertical light distribution in tomato canopy. The strategy provided here can be used to configure reflective films that will enhance light conditions in CSG, which can be applied and extended in different scenarios.
- Klíčová slova
- GroIMP, in-silico light simulation, micro-light climate, passive light supplement, reflective film,
- Publikační typ
- časopisecké články MeSH
Determine the level of significance of planting strategy and plant architecture and how they affect plant physiology and dry matter accumulation within greenhouses is essential to actual greenhouse plant management and breeding. We thus analyzed four planting strategies (plant spacing, furrow distance, row orientation, planting pattern) and eight different plant architectural traits (internode length, leaf azimuth angle, leaf elevation angle, leaf length, leaflet curve, leaflet elevation, leaflet number/area ratio, leaflet length/width ratio) with the same plant leaf area using a formerly developed functional-structural model for a Chinese Liaoshen-solar greenhouse and tomato plant, which used to simulate the plant physiology of light interception, temperature, stomatal conductance, photosynthesis, and dry matter. Our study led to the conclusion that the planting strategies have a more significant impact overall on plant radiation, temperature, photosynthesis, and dry matter compared to plant architecture changes. According to our findings, increasing the plant spacing will have the most significant impact to increase light interception. E-W orientation has better total light interception but yet weaker light uniformity. Changes in planting patterns have limited influence on the overall canopy physiology. Increasing the plant leaflet area by leaflet N/A ratio from what we could observe for a rose the total dry matter by 6.6%, which is significantly better than all the other plant architecture traits. An ideal tomato plant architecture which combined all the above optimal architectural traits was also designed to provide guidance on phenotypic traits selection of breeding process. The combined analysis approach described herein established the causal relationship between investigated traits, which could directly apply to provide management and breeding insights on other plant species with different solar greenhouse structures.
- Klíčová slova
- GroIMP, functional-structure plant modeling (FSPM), partial least squares path modeling (PLS-PM), photosynthesis, plant architecture, planting strategy,
- Publikační typ
- časopisecké články MeSH