Manganites Dotaz Zobrazit nápovědu
The magnetic ordering of four Tb3+-doped manganites and cobaltites, La0.7Tb0.1Sr0.2MnO3, La0.7Tb0.1Ca0.2MnO3, La0.7Tb0.1Sr0.2CoO3 and La0.7Tb0.1Ca0.2CoO3, have been studied by means of neutron diffraction and SQUID magnetometry. All the samples were prepared by sintering of sol-gel precursors and their orthorhombic or rhombohedral perovskite structures at room and low temperatures were refined. A long-range ferromagnetic (FM) order was detected at the Mn and Co sites. In addition, a small but significant ordered moment was observed at A sites of studied cobaltites, which was attributed to local Tb3+ moments, aligned by exchange interactions due to FM ordered Co sublattice. No or minor Tb3+ contribution was detected in studied manganites.
- Publikační typ
- časopisecké články MeSH
Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications.
- Klíčová slova
- Cell labeling, Dual probes, MRI, Magnetic nanoparticles, Manganites, Molten salt synthesis, Silica coating,
- MeSH
- fibroblasty cytologie metabolismus MeSH
- fluorescence MeSH
- fluorescenční protilátková technika MeSH
- HeLa buňky MeSH
- Jurkat buňky MeSH
- kultivované buňky MeSH
- kůže cytologie metabolismus MeSH
- lanthan chemie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- magnetické nanočástice chemie MeSH
- membránové glykoproteiny asociované s lyzozomy imunologie metabolismus MeSH
- monoklonální protilátky imunologie MeSH
- oxid křemičitý chemie MeSH
- povrchové vlastnosti MeSH
- průtoková cytometrie MeSH
- silany chemie MeSH
- sloučeniny manganu chemie MeSH
- stroncium chemie MeSH
- transmisní elektronová mikroskopie MeSH
- velikost částic MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- LAMP1 protein, human MeSH Prohlížeč
- lanthan MeSH
- magnetické nanočástice MeSH
- manganite MeSH Prohlížeč
- membránové glykoproteiny asociované s lyzozomy MeSH
- monoklonální protilátky MeSH
- oxid křemičitý MeSH
- silany MeSH
- sloučeniny manganu MeSH
- stroncium MeSH
- tetraethoxysilane MeSH Prohlížeč
Pulse laser deposited La2/3Sr1/3MnO3 ultrathin films on SrTiO3 substrates were characterized by polar and longitudinal Kerr magneto-optical spectroscopy. Experimental data were confronted with theoretical simulations based on the transfer matrix formalism. An excellent agreement was achieved for a 10.7 nm thick film, while a distinction in the Kerr effect amplitudes was obtained for a 5 nm thick film. This demonstrated the suppression of ferromagnetism due to the layer/substrate interface effects. A revised, depth-sensitive theoretical model with monolayer resolution described the experimental data well, and provided clear cross-section information about the evolution of ferromagnetism inside the film. It was found that the full restoration of the double-exchange mechanism, responsible for the ferromagnetic ordering in La2/3Sr1/3MnO3, occurs within the first nine monolayers of the film. Moreover, all the studied films exhibited magneto-optical properties similar to bulk crystals and thick films. This confirmed a fully developed perovskite structure down to 5 nm.
- Klíčová slova
- Interface effects, Magneto-optical Kerr effect, Magneto-optics, Manganites, Ultrathin films,
- Publikační typ
- časopisecké články MeSH
Three magnetic resonance (MR)/fluorescence imaging probes were tested for visualization, cellular distribution, and survival of labeled pancreatic islets in vitro and following transplantation. As T(1) contrast agents (CAs), gadolinium(III) complexes linked to β-cyclodextrin (Gd-F-βCD) or bound to titanium dioxide (TiO2 @RhdGd) were tested. As a T(2) CA, perovskite manganite nanoparticles (LSMO@siF@si) were examined. Fluorescein or rhodamine was incorporated as a fluorescent marker in all probes. Islets labeled with gadolinium(III) CAs were visible as hyperintense spots on MR in vitro, but detection in vivo was inconclusive. Islets labeled with LSMO@siF@si CA were clearly visible as hypointense spots or areas on MR scans in vitro as well as in vivo. All CAs were detected inside the islet cells by fluorescence. Although the vitality and function of the labeled islets was not impaired by any of the tested CAs, results indicate that LSMO@siF@si CA is a superior marker for islet labeling, as it provides better contrast enhancement within a shorter scan time.
- MeSH
- beta-cyklodextriny chemie MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie MeSH
- gadolinium chemie MeSH
- kontrastní látky chemie MeSH
- kovové nanočástice chemie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- Langerhansovy ostrůvky cytologie diagnostické zobrazování metabolismus MeSH
- magnetická rezonanční tomografie MeSH
- potkani inbrední LEW MeSH
- rentgendiagnostika MeSH
- sloučeniny manganu chemie MeSH
- titan chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- beta-cyklodextriny MeSH
- betadex MeSH Prohlížeč
- fluorescenční barviva MeSH
- gadolinium MeSH
- kontrastní látky MeSH
- manganite MeSH Prohlížeč
- sloučeniny manganu MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.
- Publikační typ
- časopisecké články MeSH
Three forms of La,Sr-manganites are synthesized and the role of Tb doping is investigated. First two systems are sol-gel nanoparticles and sintered ceramics of the composition La0.56Tb0.07Sr0.37MnO3, whereas the third system is formed by comparable nanoparticles La0.51Tb0.06Sr0.43MnO3 synthesized in molten salt. The samples show pseudocubic perovskite structure with only small tilts of MnO6 that point to Ibmm symmetry in the bulk and [Formula: see text] symmetry in nanoparticles. SQUID magnetometry and neutron diffraction reveal a complete FM order of Mn spins in bulk, a reduced order in nanoparticles, and non-zero moments at A sites. Detailed analysis suggests that the dodecahedral coordination of A sites adapts to small terbium size, and the resulting crystal field splitting of Tb(3+) yields a singlet ground state. The response to exchange and external fields is characterized as a giant Van Vleck paramagnetism in contrast to the Curie-type behaviour of Tb-based orthoaluminates and orthocobaltites with the quasi-doublet ground state.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rare-earth-doped ferromagnetic manganites La0.63RE0.07Sr0.30MnO3 (RE = Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd3+ ions, whereas Kramers ions Dy3+ and non-Kramers ions Ho3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb3+ doping leads also to a notably increased coercivity compared to other La0.63RE0.07Sr0.30MnO3 systems.
- Publikační typ
- časopisecké články MeSH