Sublimation enthalpy
Dotaz
Zobrazit nápovědu
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller-Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.
- Klíčová slova
- ab initio calculations, diamines, molecular crystals, sublimation, thermodynamics,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A computational methodology for calculation of sublimation enthalpies of molecular crystals from first principles is developed and validated by comparison to critically evaluated literature experimental data. Temperature-dependent sublimation enthalpies for a set of selected 22 molecular crystals in their low-temperature phases are calculated. The computational methodology consists of several building blocks based on high-level electronic structure methods of quantum chemistry and statistical thermodynamics. Ab initio methods up to the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction with an estimated complete basis set description [CCSD(T)/CBS] are used to calculate the cohesive energies of crystalline phases within a fragment-based additive scheme. Density functional theory (DFT) calculations with periodic boundary conditions (PBC) coupled with the quasi-harmonic approximation are used to evaluate the thermal contributions to the enthalpy of the solid phase. The properties of the vapor phase are calculated within the ideal-gas model using the rigid-rotor harmonic-oscillator model with correction for internal rotation using a one-dimensional hindered rotor approximation and a proper treatment of the molecular rotational degrees of freedom in the vicinity of 0 K. All individual terms contributing to the sublimation enthalpy as a function of temperature are discussed and their uncertainties estimated by comparison to critically evaluated experimental data.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of the current work was to determine thermo dynamical properties of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde. RESULTS: The temperature dependence of saturated vapor pressure of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde was determined by Knudsen's effusion method. The results are presented by the Clapeyron-Clausius equation in linear form, and via this form, the standard enthalpies, entropies and Gibbs energies of sublimation and evaporation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly by the corresponding standard molar combustion enthalpy, obtained using bomb calorimetry combustion. CONCLUSIONS: Determination of the thermodynamic properties for these compounds may contribute to solving practical problems pertaining optimization processes of their synthesis, purification and application and it will also provide a more thorough insight regarding the theoretical knowledge of their nature.Graphical abstract:Generalized structural formula of investigated compounds and their formation enthalpy determination scheme in the gaseous state.
- Klíčová slova
- 5(2-Nitrophenyl)-furan-2-carbaldehydes, Combustion enthalpy, Formation enthalpy, Isomerisation enthalpy, Sublimation enthalpy, Vapor pressure, Vaporization enthalpy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of the current work was to determine thermodynamical properties of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrolphenyl)-2-furyl]acrylic acids. RESULTS: The temperature dependences of saturated vapor pressures of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrolphenyl)-2-furyl]acrylic acids were determined by the Knudsen effusion method. The results are presented by the Clapeyron-Clausius equation in linear form, and via this form, the standard enthalpies of sublimation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly from the corresponding standard molar combustion enthalpy, obtained using combustion bomb calorimetry. The non-nearest neighbour interactions (strain) in molecule were defined. The ideal-gas enthalpies of investigated compounds formation and the data available from the literature were used for calculation of group-additivity parameters and the correction terms useful in the application of the Benson correlation. CONCLUSION: Determining the thermodynamic properties for these compounds will contribute to solving practical problems pertaining to optimization processes of their synthesis, purification and application. It will also provide a more thorough insight regarding the theoretical knowledge of their nature and are necessary for the application of the Benson group-contribution correlation for calculation of Δ f H m ( 298.15 K ) o (g)calc.
- Klíčová slova
- Arylfuran derivatives, Combustion enthalpy, Formation enthalpy, Group-additivity correlation, Isomerization, Sublimation enthalpy, Vapor pressure,
- Publikační typ
- časopisecké články MeSH
Knowledge of molecular crystal sublimation equilibrium data is vital in many industrial processes, but this data can be difficult to measure experimentally for low-volatility species. Theoretical prediction of sublimation pressures could provide a useful supplement to experiment, but the exponential temperature dependence of sublimation (or any saturated vapor) pressure curve makes this challenging. An uncertainty of only a few percent in the sublimation enthalpy or entropy can propagate to an error in the sublimation pressure exceeding several orders of magnitude for a given temperature interval. Despite this fundamental difficulty, this paper performs some of the first ab initio predictions of sublimation pressure curves. Four simple molecular crystals (ethane, methanol, benzene, and imidazole) have been selected for a case study showing the currently achievable accuracy of quantum chemistry calculations. Fragment-based ab initio techniques and the quasi-harmonic approximation are used for calculations of cohesive and phonon properties of the crystals, while the vapor phase is treated by the ideal gas model. Ab initio sublimation pressure curves for model compounds are compared against their experimental counterparts. The computational uncertainties are estimated, weak points of the computational methodology are identified, and further improvements are proposed.
- Publikační typ
- časopisecké články MeSH
This work presents a new Knudsen effusion apparatus employing continuous monitoring of sample deposition using a quartz-crystal microbalance sensor with internal calibration by gravimetric determination of the sample mass loss. The apparatus was tested with anthracene and 1,3,5-triphenylbenzene and subsequently used for the study of sublimation behavior of several proteinogenic amino acids. Their low volatility and thermal instability strongly limit possibilities of studying their sublimation behavior and available literature data. The results presented in this work are unique in their temperature range and low uncertainty required for benchmarking theoretical studies of sublimation behavior of molecular crystals. The possibility of dimerization in the gas phase that would invalidate the effusion experiments is addressed and disproved by theoretical calculations. The enthalpy of sublimation of each amino acid is analyzed based on the contributions in two hypothetical sublimation paths involving the proton transfer in the solid and in the gas phase.
- Klíčová slova
- Knudsen effusion, amino acids, phase transitions, sublimation enthalpies, thermodynamics,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cohesive properties (lattice and cohesive energy of the crystal and corresponding sublimation enthalpy) of the complete set of twenty enantiopure anhydrous proteinogenic amino acids are investigated using first-principles calculations. In contrast to neutral amino acid molecules in the vapor phase, all amino acids form crystals in their zwitterionic form. Therefore, reliable ab initio calculations of the proton transfer energy are an indispensable step of such calculations. Simplifying procedures, designed to rationalize the computational cost of the quasi-harmonic approximation, which proves too demanding if performed fully at the given quantum level of theory, are presented and tested. For this purpose, atomic multipoles (up to the quadrupoles) for the amoeba force field are parametrized for all amino acid zwitterions. While the calculated lattice energies of the amino acids range from 235-458 kJ mol-1 in absolute value, the proton transfer energies typically amount to 100-220 kJ mol-1, which translates to sublimation enthalpies ranging from 117-202 kJ mol-1, appreciably exceeding the sublimation enthalpy values common for nonionic molecular crystals. Critically assessed experimental data on sublimation enthalpies are used as a benchmark for comparison of the data calculated in this work. Cohesive properties of most amino acids calculated in this work, combining the PBE-D3(BJ)/PAW and CCSD(T)-F12/aug-cc-pVDZ levels of theory used for predictions of the lattice energies and of the proton transfer energies, respectively, exhibit a reasonable agreement with the experiment. At the same time, this work contains the first published data on cohesive properties for several enantiopure amino acids.
- MeSH
- aminokyseliny chemie MeSH
- krystalizace MeSH
- kvantová teorie MeSH
- počítačová simulace MeSH
- protony MeSH
- termodynamika MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- protony MeSH
Low volatility of ionic liquids (ILs), being one of their most valuable properties, is also the principal factor making reliable measurements of vapor pressures and vaporization (or sublimation) enthalpies of ILs extremely difficult. Alternatively, vaporization enthalpies at the temperature of the triple point can be obtained from the enthalpies of sublimation and fusion. While the latter can be obtained calorimetrically with a fair accuracy, the former is in principle accessible through ab initio computations. This work assesses the performance of the first-principles calculations of sublimation properties of ILs. Namely, 3 compounds, coupling the 1-ethyl-3-methylimidazolium cation [emIm] with either tetrafluoroborate [BF4], hexafluorophosphate [PF6], or bis(trifluoromethylsulfonyl)imide [NTf2] anions were selected for a case study. A computational methodology, originally developed for molecular crystals, is adopted for crystals of ILs. It exploits periodic density functional theory (DFT) calculations of the unit-cell geometries and quasi-harmonic phonons and many-body expansion schemes for ab initio refinements of the lattice energies of crystalline ILs. The vapor phase is treated as the ideal gas whose properties are obtained combining the rigid rotor-harmonic oscillator model with corrections from the one-dimensional hindered rotors and molecular-dynamics simulations capturing the contributions from the interionic interaction modes. Although the given computational approach enables one to reach the chemical accuracy (4 kJ mol-1) of calculated sublimation enthalpies of simple molecular crystals, reaching the same level of accuracy for ionic liquids proves challenging as crystals of ionic liquids are bound appreciably stronger than common molecular crystals, the underlying cohesive energies of solid ionic liquids is up to 1 order of magnitude larger. Still, combination of the mentioned computational and experimental frameworks results in a novel promising scheme that is expected to generate reliable and accurate temperature-dependent data on sublimation (and vaporization) of ILs.
- Publikační typ
- časopisecké články MeSH
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-temperature α polymorph of crystalline methanol. Both density functional theory (DFT) and ab initio wavefunction techniques up to coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)) are combined with the quasi-harmonic approximation to predict energies, structures, and properties. The accuracy, reliability, and uncertainties of the individual quantum-chemical methods are assessed via detailed comparison of calculated and experimental data on structural properties (density) and thermodynamic properties (isobaric heat capacity). Performance of individual methods is also studied in context of the hierarchy of the quantum-chemical methods. The results indicate that while some properties such as the sublimation enthalpy and thermal expansivity can be modeled fairly well, other properties such as the molar volume and isobaric heat capacities are harder to predict reliably. The errors among the energies, structures, and phonons are closely coupled, and most accurate predictions here appear to arise from fortuitous error compensation among the different contributions. This study highlights how sensitive molecular crystal property predictions can be to the underlying model approximations and the significant challenges inherent in first-principles predictions of solid state structures and thermochemistry.
- Publikační typ
- časopisecké články MeSH