Thurniaceae Dotaz Zobrazit nápovědu
BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
- Klíčová slova
- Chromosome number, Cyperaceae, Juncaceae, Thurniaceae, chromosome size, distribution range size, genome size, holocentric chromosomes, holokinetic drive,
- MeSH
- chromozomy rostlin * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Juncaceae is a cosmopolitan family belonging to the cyperid clade of Poales together with Cyperaceae and Thurniaceae. These families have global economic and ethnobotanical significance and are often keystone species in wetlands around the world, with a widespread cosmopolitan distribution in temperate and arctic regions in both hemispheres. Currently, Juncaceae comprises more than 474 species in eight genera: Distichia, Juncus, Luzula, Marsippospermum, Oreojuncus, Oxychloë, Patosia and Rostkovia. The phylogeny of cyperids has not been studied before in a complex view based on most sequenced species from all three families. In this study, most sequenced regions from chloroplast (rbcL, trnL, trnL-trnF) and nuclear (ITS1-5.8S-ITS2) genomes were employed from more than a thousand species of cyperids covering all infrageneric groups from their entire distributional range. We analyzed them by maximum parsimony, maximum likelihood, and Bayesian inference to revise the phylogenetic relationships in Juncaceae and Cyperaceae. Our major results include the delimitation of the most problematic paraphyletic genus Juncus, in which six new genera are recognized and proposed to recover monophyly in this group: Juncus, Verojuncus, gen. nov., Juncinella, gen. et stat. nov., Alpinojuncus, gen. nov., Australojuncus, gen. nov., Boreojuncus, gen. nov. and Agathryon, gen. et stat. nov. For these genera, a new category, Juncus supragen. et stat. nov., was established. This new classification places most groups recognized within the formal Juncus clade into natural genera that are supported by morphological characters.
- Klíčová slova
- Cyperaceae, Cyperids, Identification keys, Juncaceae, New genera, Phylogeny, Taxonomy, cpDNA, nDNA,
- MeSH
- Bayesova věta MeSH
- fylogeneze MeSH
- šáchorovité * genetika MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH