-
Something wrong with this record ?
Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity
Kinclova-Zimmermannova O, Sychrova H
Language English Country United States
NLK
ProQuest Central
from 2003-01-01 to 1 year ago
Medline Complete (EBSCOhost)
from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2003-01-01 to 1 year ago
- MeSH
- Financing, Organized MeSH
- Adaptation, Physiological physiology MeSH
- Ion Transport physiology MeSH
- Membrane Proteins genetics metabolism MeSH
- Mitogen-Activated Protein Kinases genetics metabolism MeSH
- Sodium-Hydrogen Exchangers genetics metabolism MeSH
- Osmotic Pressure MeSH
- Cation Transport Proteins genetics metabolism MeSH
- Gene Expression Regulation, Fungal physiology MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Protein Structure, Tertiary drug effects MeSH
- Up-Regulation physiology MeSH
Saccharomyces cerevisiae uses different mechanisms to adapt to changes in environmental osmolarity. Upon hyperosmotic shock, cells first mobilize a rapid rescue system that prevents excessive loss of ions and water; then in the adaptation period they accumulate a compatible solute (glycerol). When subjected to hypoosmotic shock, they rapidly release intracellular stocks of glycerol to reduce intracellular osmolarity and prevent bursting. The plasma membrane Nha1 alkali metal cation/H+ antiporter is not important in helping the cells to survive a sudden drop in external osmolarity, but is involved in the cell response to hyperosmotic shock. For this role, its long hydrophilic C-terminus is indispensable. The capacity of the Nha1 antiporter to transport potassium is regulated by Hog1 kinase. Upon sorbitol-mediated stress, the Nha1p potassium export activity decreases in order to maintain a higher intracellular concentration of solutes. The C-terminal-less Nha1 version is not inactivated and its potassium efflux activity renders cells very sensitive to hyperosmotic shock. Taken together, our results suggest an important role of Nha1p and its C-terminus in the immediate response to hyperosmotic shock as part of the rapid rescue mechanism.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07520531
- 003
- CZ-PrNML
- 005
- 20111210131149.0
- 008
- 090403s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kinclová-Zimmermannová, Olga $7 xx0097298
- 245 10
- $a Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity / $c Kinclova-Zimmermannova O, Sychrova H
- 314 __
- $a Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, Videnska 1083, 142 20, Prague 4, Czech Republic
- 520 9_
- $a Saccharomyces cerevisiae uses different mechanisms to adapt to changes in environmental osmolarity. Upon hyperosmotic shock, cells first mobilize a rapid rescue system that prevents excessive loss of ions and water; then in the adaptation period they accumulate a compatible solute (glycerol). When subjected to hypoosmotic shock, they rapidly release intracellular stocks of glycerol to reduce intracellular osmolarity and prevent bursting. The plasma membrane Nha1 alkali metal cation/H+ antiporter is not important in helping the cells to survive a sudden drop in external osmolarity, but is involved in the cell response to hyperosmotic shock. For this role, its long hydrophilic C-terminus is indispensable. The capacity of the Nha1 antiporter to transport potassium is regulated by Hog1 kinase. Upon sorbitol-mediated stress, the Nha1p potassium export activity decreases in order to maintain a higher intracellular concentration of solutes. The C-terminal-less Nha1 version is not inactivated and its potassium efflux activity renders cells very sensitive to hyperosmotic shock. Taken together, our results suggest an important role of Nha1p and its C-terminus in the immediate response to hyperosmotic shock as part of the rapid rescue mechanism.
- 650 _2
- $a fyziologická adaptace $x fyziologie $7 D000222
- 650 _2
- $a proteiny přenášející kationty $x genetika $x metabolismus $7 D027682
- 650 _2
- $a regulace genové exprese u hub $x fyziologie $7 D015966
- 650 _2
- $a iontový transport $x fyziologie $7 D017136
- 650 _2
- $a membránové proteiny $x genetika $x metabolismus $7 D008565
- 650 _2
- $a mitogenem aktivované proteinkinasy $x genetika $x metabolismus $7 D020928
- 650 _2
- $a osmotický tlak $7 D009997
- 650 _2
- $a terciární struktura proteinů $x účinky léků $7 D017434
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
- 650 _2
- $a Na(+)-H(+) antiport $x genetika $x metabolismus $7 D017923
- 650 _2
- $a upregulace $x fyziologie $7 D015854
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Sychrová, Hana, $d 1959- $7 xx0030590
- 773 0_
- $w MED00001271 $t Current genetics $g Roč. 49, č. 4 (2006), s. 229-236 $x 0172-8083
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090312170439 $b ABA008
- 991 __
- $a 20090717105944 $b ABA008
- 999 __
- $a ok $b bmc $g 638334 $s 491133
- BAS __
- $a 3
- BMC __
- $a 2006 $b 49 $c 4 $d 229-236 $i 0172-8083 $m Current genetics $x MED00001271
- LZP __
- $a 2009-B1/vtme