-
Je něco špatně v tomto záznamu ?
Large propeptides of fungal beta-N-acetylhexosaminidases are novel enzyme regulators that must be intracellularly processed to control activity, dimerization, and secretion into the extracellular environment
Plíhal O, Sklenár J, Hofbauerová K, Novák P, Man P, Pompach P, Kavan D, Ryslavá H, Weignerová L, Charvátová-Pisvejcová A, Kren V, Bezouska K
Jazyk angličtina Země Spojené státy americké
- MeSH
- acetylglukosamin analogy a deriváty farmakologie MeSH
- aktivace enzymů MeSH
- beta-N-acetylhexosaminidasy metabolismus sekrece MeSH
- biologický transport MeSH
- dimerizace MeSH
- endoplazmatické retikulum metabolismus MeSH
- financování organizované MeSH
- furin metabolismus MeSH
- genetická transkripce imunologie MeSH
- houby enzymologie MeSH
- katalýza MeSH
- molekulární sekvence - údaje MeSH
- prekurzory enzymů metabolismus sekrece MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- stabilita enzymů MeSH
- thiazoly farmakologie MeSH
Filamentous fungi produce and secrete beta-N-acetylhexosaminidases, Hex, as important components of the binary chitinolytic systems involved in the formation of septa and hyphenation. Enzyme reconstitution experiments published previously indicate that Hex can occur in the form of two molecular species containing either one or two molecules of the propeptide noncovalently associated with the enzyme dimer. Here, we describe a novel mechanism for the regulation of the activity of Hex based on the association of their catalytic subunits with the large N-terminal propeptides in vivo. We show that the enzyme precursor is processed early in the biosynthesis, shortly after the addition of N-glycans through the action of a dibasic peptidase, cleaving both before and after the dibasic sequence. The processing site for this unique dibasic peptidase, different from that of kexins, is conserved among the beta-N-acetylhexosaminidases from filamentous fungi, and inhibition of the dibasic peptidase abrogates enzyme folding and activation. Binding of the released propeptide to the catalytic subunit of Hex is essential for its activation. An examination of the kinetics of Hex activation and dimerization in vitro allowed us to understand the unusually high efficiency of the assembly of this enzyme. We also report that the fungus is able to actively regulate the concentration of the processed propeptide in endoplasmic reticulum and thus the specific activity of the produced Hex. This novel regulatory mechanism enables the control of the catalytic activity and architecture of the secreted enzyme according to the needs of the producing cell at various stages of its growth cycle.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07526540
- 003
- CZ-PrNML
- 005
- 20111210143049.0
- 008
- 090727s2007 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Plíhal, Ondřej $7 xx0171563
- 245 10
- $a Large propeptides of fungal beta-N-acetylhexosaminidases are novel enzyme regulators that must be intracellularly processed to control activity, dimerization, and secretion into the extracellular environment / $c Plíhal O, Sklenár J, Hofbauerová K, Novák P, Man P, Pompach P, Kavan D, Ryslavá H, Weignerová L, Charvátová-Pisvejcová A, Kren V, Bezouska K
- 314 __
- $a Institute of Microbiology, Academy of Sciences of the Czech Republic, VídenskA 1083, 14220 Praha 4, Czech Republic
- 520 9_
- $a Filamentous fungi produce and secrete beta-N-acetylhexosaminidases, Hex, as important components of the binary chitinolytic systems involved in the formation of septa and hyphenation. Enzyme reconstitution experiments published previously indicate that Hex can occur in the form of two molecular species containing either one or two molecules of the propeptide noncovalently associated with the enzyme dimer. Here, we describe a novel mechanism for the regulation of the activity of Hex based on the association of their catalytic subunits with the large N-terminal propeptides in vivo. We show that the enzyme precursor is processed early in the biosynthesis, shortly after the addition of N-glycans through the action of a dibasic peptidase, cleaving both before and after the dibasic sequence. The processing site for this unique dibasic peptidase, different from that of kexins, is conserved among the beta-N-acetylhexosaminidases from filamentous fungi, and inhibition of the dibasic peptidase abrogates enzyme folding and activation. Binding of the released propeptide to the catalytic subunit of Hex is essential for its activation. An examination of the kinetics of Hex activation and dimerization in vitro allowed us to understand the unusually high efficiency of the assembly of this enzyme. We also report that the fungus is able to actively regulate the concentration of the processed propeptide in endoplasmic reticulum and thus the specific activity of the produced Hex. This novel regulatory mechanism enables the control of the catalytic activity and architecture of the secreted enzyme according to the needs of the producing cell at various stages of its growth cycle.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a acetylglukosamin $x analogy a deriváty $x farmakologie $7 D000117
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a biologický transport $7 D001692
- 650 _2
- $a katalýza $7 D002384
- 650 _2
- $a dimerizace $7 D019281
- 650 _2
- $a endoplazmatické retikulum $x metabolismus $7 D004721
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a prekurzory enzymů $x metabolismus $x sekrece $7 D004792
- 650 _2
- $a stabilita enzymů $7 D004795
- 650 _2
- $a houby $x enzymologie $7 D005658
- 650 _2
- $a furin $x metabolismus $7 D045683
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a sekvenční homologie aminokyselin $7 D017386
- 650 _2
- $a thiazoly $x farmakologie $7 D013844
- 650 _2
- $a genetická transkripce $x imunologie $7 D014158
- 650 _2
- $a beta-N-acetylhexosaminidasy $x metabolismus $x sekrece $7 D001619
- 700 1_
- $a Sklenář, Jan $7 xx0137801
- 700 1_
- $a Hofbauerová, Kateřina, $d 1974- $7 jo2004232787
- 700 1_
- $a Novák, Petr, $d 1974- $7 xx0079054
- 700 1_
- $a Man, Petr $7 xx0131981
- 700 1_
- $a Pompach, Petr $7 xx0101978
- 700 1_
- $a Kavan, Daniel, $d 1977- $7 xx0128917
- 700 1_
- $a Ryšlavá, Helena
- 700 1_
- $a Weignerová, Lenka $7 xx0104801
- 700 1_
- $a Charvátová-Pišvejcová, Andrea. $7 _AN037401
- 700 1_
- $a Křen, Vladimír $7 xx0070803
- 700 1_
- $a Bezouška, Karel, $d 1960- $7 jo2005273852
- 773 0_
- $w MED00009310 $t Biochemistry $g Roč. 46, č. 10 (2007), s. 2719-2734 $x 0006-2960
- 910 __
- $a ABA008 $b x $y 7
- 990 __
- $a 20090726182400 $b ABA008
- 991 __
- $a 20090916150308 $b ABA008
- 999 __
- $a ok $b bmc $g 668912 $s 526174
- BAS __
- $a 3
- BMC __
- $a 2007 $b 46 $c 10 $d 2719-2734 $i 0006-2960 $m Biochemistry (Easton) $x MED00009310
- LZP __
- $a 2009-B3/vtme