• Je něco špatně v tomto záznamu ?

Pattern storage in a sparsely coded neural network with cyclic activation

Stroffek J, Kuriscak E, Marsalek P

. 2007 ; 89 (1-3) : 257-263.

Jazyk angličtina Země Irsko

Perzistentní odkaz   https://www.medvik.cz/link/bmc07526853

We investigate an artificial neural network model with a modified Hebb rule. It is an auto-associative neural network similar to the Hopfield model and to the Willshaw model. It has properties of both of these models. Another property is that the patterns are sparsely coded and are stored in cycles of synchronous neural activities. The cycles of activity for some ranges of parameter increase the capacity of the model. We discuss basic properties of the model and some of the implementation issues, namely optimizing of the algorithms. We describe the modification of the Hebb learning rule, the learning algorithm, the generation of patterns, decomposition of patterns into cycles and pattern recall.

Citace poskytuje Crossref.org

000      
00000naa 2200000 a 4500
001      
bmc07526853
003      
CZ-PrNML
005      
20200716133326.0
008      
090802s2007 ie e eng||
009      
AR
024    __
$a 10.1016/j.biosystems.2006.04.023 $2 doi
035    __
$a (PubMed)17276584
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Stroffek, Július $7 xx0110493
245    10
$a Pattern storage in a sparsely coded neural network with cyclic activation / $c Stroffek J, Kuriscak E, Marsalek P
314    __
$a Charles University Prague, Department of Pathological Physiology, U nemocnice 5, CZ-128 53 Praha 2, Czech Republic. Julius.Stroffek@lf1.cuni.cz
520    9_
$a We investigate an artificial neural network model with a modified Hebb rule. It is an auto-associative neural network similar to the Hopfield model and to the Willshaw model. It has properties of both of these models. Another property is that the patterns are sparsely coded and are stored in cycles of synchronous neural activities. The cycles of activity for some ranges of parameter increase the capacity of the model. We discuss basic properties of the model and some of the implementation issues, namely optimizing of the algorithms. We describe the modification of the Hebb learning rule, the learning algorithm, the generation of patterns, decomposition of patterns into cycles and pattern recall.
650    _2
$a financování organizované $7 D005381
650    _2
$a modely neurologické $7 D008959
650    _2
$a nervová síť $7 D009415
700    1_
$a Kuriščák, Eduard $7 xx0107553
700    1_
$a Maršálek, Petr, $d 1966- $7 jo2002103069
773    0_
$w MED00000785 $t Biosystems $g Roč. 89, č. 1-3 (2007), s. 257-263 $x 0303-2647
910    __
$a ABA008 $b x $y 7 $z 0
990    __
$a 20090726182400 $b ABA008
991    __
$a 20200716133324 $b ABA008
999    __
$a ok $b bmc $g 670869 $s 530018
BAS    __
$a 3
BMC    __
$a 2007 $b 89 $c 1-3 $d 257-263 $i 0303-2647 $m Biosystems $x MED00000785
LZP    __
$a 2009-B3/vtme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...