Use of functional magnetic resonance imaging in the evaluation of neural plasticity in macular degeneration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40948806
PubMed Central
PMC12423041
DOI
10.3389/fnins.2025.1622244
Knihovny.cz E-zdroje
- Klíčová slova
- age-related macular degeneration, functional magnetic resonance imaging, population connective field modeling, population receptive fields, resting-state fMRI,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review evaluates the use of functional Magnetic Resonance Imaging (fMRI) to investigate brain plasticity in Age-Related Macular Degeneration (AMD). An analysis of studies utilizing fMRI methods identified three primary research approaches: task-based fMRI (17 studies), resting-state fMRI (4 studies), and population receptive fields (pRF) with population connective fields modeling (pCF; 3 studies). The review outlines the principles behind each fMRI methodology and summarizes the key functional and morphological findings. Results consistently demonstrated significant structural and connectivity reorganization in the brains of individuals with AMD, suggesting that the brain undergoes adaptive responses to sensory loss. Voxel-based morphometric findings, measuring the gray matter volume loss in visual cortex, further confirm these structural changes, which appear to correlate with altered functional connectivity. These insights underscore the intricate relationship between sensory deficits and cognitive function in AMD and emphasize the potential for targeted therapeutic interventions. FMRI emerges as a vital tool in group studies for understanding the neural underpinnings of AMD and its broader cognitive implications.
Zobrazit více v PubMed
Baker C. I., Dilks D. D., Peli E., Kanwisher N. (2008). Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vis. Res. 48, 1910–1919. doi: 10.1016/j.visres.2008.05.020, PMID: PubMed DOI PMC
Baker C. I., Peli E., Knouf N., Kanwisher N. G. (2005). Reorganization of visual processing in macular degeneration. J. Neurosci. 25, 614–618. doi: 10.1523/JNEUROSCI.3476-04.2005, PMID: PubMed DOI PMC
Baseler H. A., Gouws A., Crossland M. D., Leung C., Tufail A., Rubin G. S., et al. (2011a). Objective visual assessment of antiangiogenic treatment for wet age-related macular degeneration. Optom. Vis. Sci. 88, 1255–1261. doi: 10.1097/OPX.0b013e3182282f13, PMID: PubMed DOI
Baseler H. A., Gouws A., Haak K. V., Racey C., Crossland M. D., Tufail A., et al. (2011b). Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14, 649–655. doi: 10.1038/nn.2793, PMID: PubMed DOI
Boucard C. C., Hernowo A. T., Maguire R. P., Jansonius N. M., Roerdink J. B. T. M., Hooymans J. M. M., et al. (2009). Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132, 1898–1906. doi: 10.1093/brain/awp119, PMID: PubMed DOI PMC
Brown H. D. H., Gouws A. D., Vernon R. J. W., Lawrence S. J. D., Donnelly G., Gill L., et al. (2021). Assessing functional reorganization in visual cortex with simulated retinal lesions. Brain Struct. Funct. 226, 2855–2867. doi: 10.1007/s00429-021-02366-w, PMID: PubMed DOI PMC
Cai Y. H., Huang X. (2023). Abnormal functional connectivity strength in age-related macular degeneration patients: a fMRI study. Neuroreport 34, 845–852. doi: 10.1097/WNR.0000000000001962, PMID: PubMed DOI
Dilks D. D., Baker C. I., Peli E., Kanwisher N. (2009). Reorganization of visual processing in macular degeneration is not specific to the “preferred retinal locus.”. J. Neurosci. 29, 2768–2773. doi: 10.1523/JNEUROSCI.5258-08.2009, PMID: PubMed DOI PMC
Douaud G., Filippini N., Knight S., Talbot K., Turner M. R. (2011). Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 134, 3470–3479. doi: 10.1093/brain/awr279, PMID: PubMed DOI
Dumoulin S. O., Wandell B. A. (2008). Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660. doi: 10.1016/j.neuroimage.2007.09.034, PMID: PubMed DOI PMC
Eckardt C., Eckardt U. (2002). Macular translocation in nonexudative age-related macular degeneration. Retina 22, 786–794. doi: 10.1097/00006982-200212000-00017, PMID: PubMed DOI
Gravel N., Harvey B., Nordhjem B., Haak K. V., Dumoulin S. O., Renken R., et al. (2014). Cortical connective field estimates from resting state fMRI activity. Front. Neurosci. 8. doi: 10.3389/fnins.2014.00339, PMID: PubMed DOI PMC
Haak K. V., Cornelissen F. W., Morland A. B. (2012). Population receptive field dynamics in human visual cortex. PLoS One 7:e37686. doi: 10.1371/journal.pone.0037686, PMID: PubMed DOI PMC
Haak K. V., Morland A. B., Rubin G. S., Cornelissen F. W. (2016). Preserved retinotopic brain connectivity in macular degeneration. Ophthalmic Physiol. Opt. 36, 335–343. doi: 10.1111/opo.12279, PMID: PubMed DOI
Haak K. V., Winawer J., Harvey B. M., Renken R., Dumoulin S. O., Wandell B. A., et al. (2013). Connective field modeling. NeuroImage 66, 376–384. doi: 10.1016/j.neuroimage.2012.10.037, PMID: PubMed DOI PMC
Hernowo A. T., Prins D., Baseler H. A., Plank T., Gouws A. D., Hooymans J. M. M., et al. (2014). Morphometric analyses of the visual pathways inmacular degeneration. Cortex 56, 99–110. doi: 10.1016/j.cortex.2013.01.003, PMID: PubMed DOI
Jiang Y.-J., Lai P.-H., Huang X. (2024). Interhemispheric functional in age-related macular degeneration patient: a resting-state functional MRI study. Neuroreport 35, 621–626. doi: 10.1097/WNR.0000000000002045, PMID: PubMed DOI
Kaarniranta K., Salminen A., Haapasalo A., Soininen H., Hiltunen M. (2011). Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimer's Dis 24, 615–631. doi: 10.3233/JAD-2011-101908, PMID: PubMed DOI
Keenan T. D. L., Goldacre R., Goldacre M. J., Keenan T. D. (2014). Associations between age-related macular degeneration, Alzheimer disease, and dementia: record linkage study of hospital admissions. JAMA Ophthalmol. 132, 63–68. doi: 10.1001/jamaophthalmol.2013.5696, PMID: PubMed DOI
Klaver C. C. W., Ott A., Hofman A., Assink J. J. M., Breteler M. M. B., de Jong P. T. V. M. (1999). Is age-related maculopathy associated with Alzheimer’s disease? The Rotterdam study. Am. J. Epidemiol. 150, 963–968. PubMed
Lešták J., Tintěra J., Karel I., Svatá Z., Rozsíval P. (2013). Functional magnetic resonance imaging in patients with the wet form of age-related macular degeneration. Neuro-Ophthalmology 37, 192–197. doi: 10.3109/01658107.2013.819581, PMID: PubMed DOI PMC
Li S., Li P., Gong H., Jiang F., Liu D., Cai F., et al. (2017). Intrinsic functional connectivity alterations of the primary visual cortex in primary angle-closure glaucoma patients before and after surgery: a resting-state fMRI study. PLoS One 12. doi: 10.1371/journal.pone.0170598, PMID: PubMed DOI PMC
Liang M., Xie B., Yang H., Yin X., Wang H., Yu L., et al. (2017). Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study. Neuroradiology 59, 517–524. doi: 10.1007/s00234-017-1824-0, PMID: PubMed DOI
Little D. M., Thulborn K. R., Szlyk J. P. (2008). An fMRI study of saccadic and smooth-pursuit eye movement control in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49, 1728–1735. doi: 10.1167/iovs.07-0372, PMID: PubMed DOI
Liu T., Cheung S. H., Schuchard R. A., Glielmi C. B., Hu X., He S., et al. (2010). Incomplete cortical reorganization in macular degeneration. Invest. Ophthalmol. Vis. Sci. 51, 6826–6834. doi: 10.1167/iovs.09-4926, PMID: PubMed DOI PMC
Liu Z., Zhang N., Chen W., He B. (2009). Mapping the bilateral visual integration by EEG and fMRI. NeuroImage 46, 989–997. doi: 10.1016/j.neuroimage.2009.03.028, PMID: PubMed DOI PMC
Masuda Y., Dumoulin S. O., Nakadomari S., Wandell B. A. (2008). V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 18, 2483–2493. doi: 10.1093/cercor/bhm256, PMID: PubMed DOI PMC
Masuda Y., Horiguchi H., Dumoulin S. O., Furuta A., Miyauchi S., Nakadomari S., et al. (2010). Task-dependent V1 responses in human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 51, 5356–5364. doi: 10.1167/iovs.09-4775, PMID: PubMed DOI PMC
Mayer A. R., Bellgowan P. S. F., Hanlon F. M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci. Biobehav. Rev. 49, 8–18. doi: 10.1016/j.neubiorev.2014.11.016, PMID: PubMed DOI
Ming J., Thulborn K. R., Szlyk J. P. (2012). Reproducibility of activation maps for longitudinal studies of visual function by functional magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 53, 6153–6163. doi: 10.1167/iovs.11-8375, PMID: PubMed DOI PMC
Mitchell P., Liew G., Gopinath B., Wong T. Y. (2018). Age-related macular degeneration. Lancet 392, 1147–1159. doi: 10.1016/S0140-6736(18)31550-2, PMID: PubMed DOI
Nguyen T.-H., Stievenart J.-L., Saucet J.-C. (2004). Cortical response to age-related macular degeneration (part II). Functional MRI study. J. Fr. Ophtalmol. 27:72–86. Available online at: https://pubmed.ncbi.nlm.nih.gov/15602409/. PubMed
Plank T., Benkowitsch E. M. A., Beer A. L., Brandl S., Malania M., Frank S. M., et al. (2021). Cortical thickness related to compensatory viewing strategies in patients with macular degeneration. Front. Neurosci. 15:15. doi: 10.3389/fnins.2021.718737, PMID: PubMed DOI PMC
Plank T., Rosengarth K., Schmalhofer C., Goldhacker M., Brandl-Rühle S., Greenlee M. W. (2014). Perceptual learning in patients with macular degeneration. Front. Psychol. 5:5. doi: 10.3389/fpsyg.2014.01189, PMID: PubMed DOI PMC
Prins D., Hanekamp S., Cornelissen F. W. (2016). Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 94, 113–121. doi: 10.1111/aos.12825, PMID: PubMed DOI
Proitsi P., Lupton M. K., Dudbridge F., Tsolaki M., Hamilton G., Daniilidou M., et al. (2012). Alzheimer’s disease and age-related macular degeneration have different genetic models for complement gene variation. Neurobiol. Aging 33, 1843.e9–1843.e17. doi: 10.1016/j.neurobiolaging.2011.12.036, PMID: PubMed DOI
Puig J., Blasco G., Alberich-Bayarri A., Schlaug G., Deco G., Biarnes C., et al. (2018). Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke. Stroke 49, 2353–2360. doi: 10.1161/STROKEAHA.118.021319, PMID: PubMed DOI PMC
Raichle M. E., Gusnard D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. J. Comp. Neurol. 493, 167–176. doi: 10.1002/cne.20752, PMID: PubMed DOI
Ramanoël S., Chokron S., Hera R. (2018). Age-related macular degeneration changes the processing of visual scenes in the brain. Vis. Neurosci. 35:E006. doi: 10.1017/S0952523817000372, PMID: PubMed DOI
Ritter M., Hummer A., Pawloff M. (2020). Retinotopic cortical mapping as an objective functional monitoring tool of macular therapy. Invest. Ophthalmol. Vis. Sci. 61:98–106. PubMed
Ritter M., Hummer A., Pawloff M., Ledolter A. A., Linhardt D., Woletz M., et al. (2024). Retinotopic cortical mapping in objective functional monitoring of macular therapy. Br. J. Ophthalmol. 109, 98–106. doi: 10.1136/bjo-2021-320723, PMID: PubMed DOI
Rosengarth K., Keck I., Brandl-Rühle S., Frolo J., Hufendiek K., Greenlee M. W., et al. (2013). Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration. Front. Psychol. 4:4. doi: 10.3389/fpsyg.2013.00428, PMID: PubMed DOI PMC
Shao Y., Keliris G. A., Papanikolaou A., Fischer M. D., Zobor D., Jägle H., et al. (2013). Visual cortex organisation in a macaque monkey with macular degeneration. Eur. J. Neurosci. 38, 3456–3464. doi: 10.1111/ejn.12349, PMID: PubMed DOI PMC
Shen Y. K., Ge Q. M., Pan Y. C., Shu H. Y., Zhang L. J., Li Q. Y., et al. (2021). Decreased gray matter volume and increased white matter volume in patients with neovascular age-related macular degeneration: a voxelbased morphometry study. Aging 13, 23182–23192. doi: 10.18632/aging.203610, PMID: PubMed DOI PMC
Stelmack J. A., Szlyk J. P., Stelmack T. R., Demers-Turco P., Williams R. T., Moran D.’. A., et al. (2004). Psychometric properties of the veterans affairs low-vision visual functioning questionnaire. Invest. Ophthalmol. Vis. Sci. 45, 3919–3928. doi: 10.1167/iovs.04-0208, PMID: PubMed DOI
Sunness J. S., Liu T., Yantis S. (2004). Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. Ophthalmology 111, 1595–1598. doi: 10.1016/j.ophtha.2003.12.050, PMID: PubMed DOI
Szlyk J. P., Little D. M. (2009). An fMRI study of word-level recognition and processing in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 50, 4487–4495. doi: 10.1167/iovs.08-2258, PMID: PubMed DOI
Van Zeeburg E. J. T., Maaijwee K. J. M., Missotten T. (2012). A free retinal pigment epitheliumchoroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am. J. Ophthalmol. 153, 120–127.e2. doi: 10.1016/j.ajo.2011.06.007, PMID: PubMed DOI
Wandell B. A., Dumoulin S. O., Brewer A. A. (2007). Visual field maps in human cortex. Neuron 56, 366–383. doi: 10.1016/j.neuron.2007.10.012, PMID: PubMed DOI
Warbrick T. (2022). Simultaneous EEG-fMRI: what have we learned and what does the future hold? Sensors 22:22. doi: 10.3390/s22062262, PMID: PubMed DOI PMC
Whitson H. E., Chou Y. H., Potter G. G., Diaz M. T., Chen N. K., Lad E. M., et al. (2015). Phonemic fluency and brain connectivity in age-related macular degeneration: a pilot study. Brain Connect. 5, 126–135. doi: 10.1089/brain.2014.0277, PMID: PubMed DOI PMC
Wong W. L., Su X., Li X., Cheung C. M., Klein R., Cheng C. Y., et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2, e106–e116. doi: 10.1016/S2214-109X(13)70145-1, PMID: PubMed DOI
Woo S. J., Park K. H., Ahn J., Choe J. Y., Jeong H., Han J. W., et al. (2012). Cognitive impairment in age-related macular degeneration and geographic atrophy. Ophthalmology 119, 2094–2101. doi: 10.1016/j.ophtha.2012.04.026, PMID: PubMed DOI
Xiao A., Li H. J., Li Q. Y., Liang R. B., Shu H. Y., Ge Q. M., et al. (2022). Functional connectivity Hypointensity of middle cingulate gyrus and thalamus in age-related macular degeneration patients: a resting-state functional magnetic resonance imaging study. Front. Aging Neurosci. 14:14. doi: 10.3389/fnagi.2022.854758, PMID: PubMed DOI PMC
Yan X., Wang Y., Xu L., Liu Y., Song S., Ding K., et al. (2019). Altered functional connectivity of the primary visual cortex in adult Comitant strabismus: a resting-state functional MRI study. Curr. Eye Res. 44, 316–323. doi: 10.1080/02713683.2018.1540642, PMID: PubMed DOI
Zhang D., Raichle M. E. (2010). Disease and the brain’s dark energy. Nat. Rev. Neurol. 6, 15–28. doi: 10.1038/nrneurol.2009.198, PMID: PubMed DOI
Zhao J., Du Y. H., Ding X. T. (2020). Alteration of functional connectivity in patients with Alzheimer’s disease revealed by resting-state functional magnetic resonance imaging. Neural Regen. Res. 15:285. doi: 10.4103/1673-5374.265566, PMID: PubMed DOI PMC
Zhuang J., Madden D. J., Duong-Fernandez X., Chen N. K., Cousins S. W., Potter G. G., et al. (2018). Language processing in age-related macular degeneration associated with unique functional connectivity signatures in the right hemisphere. Neurobiol. Aging 63, 65–74. doi: 10.1016/j.neurobiolaging.2017.11.003, PMID: PubMed DOI PMC
Zuo X., Zhuang J., Chen N. (2020). Relationship between neural functional connectivity and memory performance in age-related macular degeneration. Neurobiol. Aging 95, 176–185. doi: 10.1016/j.neurobiolaging.2020.07.020, PMID: PubMed DOI PMC