• Something wrong with this record ?

Cisplatin interaction with cysteine and methionine in aqueous solution: computational DFT/PCM study

T. Zimmermann, Z. Chval, J.V. Burda

. 2009 ; 113 (10) : 3139-3150.

Language English Country United States

Document type Financing, Organized

In this paper we explore cisplatin interactions with sulfur-containing amino acids in a polarizable continuum model. Two cisplatin hydrated complexes were considered as reactants (chloro complex, cis-[Pt(NH3)2Cl(H2O)]+; hydroxo complex, cis-[Pt(NH3)2(OH)(H2O)]+). We considered the following reaction mechanism: first step, substitution of the aqua ligand by amino acid; second step, dissociative chelate formation. For the optimized complex (at the B3LYP/6-31+G(d)/COSMO level), the energy profile was determined using the B3LYP/6-311++G(2df,2pd) level and two different PCM models-COSMO and UAKS/DPCM methods which were adapted for use on transition metal complexes. The results show thermodynamic preference for bonding by cysteine sulfur followed by the amino group nitrogen, methionine thioether sulfur, and carboxyl-group oxygen. Methionine slightly prefers the Pt-N(Met) coordination in the chloro complex, but in the hydroxo complex it prefers the Pt-S(Met) coordination. A similar trend follows from the bonding energies: BE(Pt-S(Cys)) = 80.8 kcal/mol and BE(Pt-N(Met)) = 76 kcal/mol. According to the experimental observations, the most stable structures found are kappa2(S,N) chelates. In the case of methionine, the same thermodynamic stability is predicted also for the kappa2(N,O) chelate. This differs from the gas-phase results, where kappa2(S,N) and even kappa2(S,O) were found to be more stable than kappa2(N,O) complex.

References provided by Crossref.org

000      
03203naa 2200409 a 4500
001      
bmc11016599
003      
CZ-PrNML
005      
20121113094632.0
008      
110628s2009 xxu e eng||
009      
AR
024    __
$a 10.1021/jp807645x $2 doi
035    __
$a (PubMed)19227999
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zimmermann, Tomáš. $7 _AN059897
245    10
$a Cisplatin interaction with cysteine and methionine in aqueous solution: computational DFT/PCM study / $c T. Zimmermann, Z. Chval, J.V. Burda
314    __
$a Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic.
520    9_
$a In this paper we explore cisplatin interactions with sulfur-containing amino acids in a polarizable continuum model. Two cisplatin hydrated complexes were considered as reactants (chloro complex, cis-[Pt(NH3)2Cl(H2O)]+; hydroxo complex, cis-[Pt(NH3)2(OH)(H2O)]+). We considered the following reaction mechanism: first step, substitution of the aqua ligand by amino acid; second step, dissociative chelate formation. For the optimized complex (at the B3LYP/6-31+G(d)/COSMO level), the energy profile was determined using the B3LYP/6-311++G(2df,2pd) level and two different PCM models-COSMO and UAKS/DPCM methods which were adapted for use on transition metal complexes. The results show thermodynamic preference for bonding by cysteine sulfur followed by the amino group nitrogen, methionine thioether sulfur, and carboxyl-group oxygen. Methionine slightly prefers the Pt-N(Met) coordination in the chloro complex, but in the hydroxo complex it prefers the Pt-S(Met) coordination. A similar trend follows from the bonding energies: BE(Pt-S(Cys)) = 80.8 kcal/mol and BE(Pt-N(Met)) = 76 kcal/mol. According to the experimental observations, the most stable structures found are kappa2(S,N) chelates. In the case of methionine, the same thermodynamic stability is predicted also for the kappa2(N,O) chelate. This differs from the gas-phase results, where kappa2(S,N) and even kappa2(S,O) were found to be more stable than kappa2(N,O) complex.
590    __
$a bohemika - dle Pubmed
650    _2
$a iminokyseliny $x chemie $7 D007098
650    _2
$a chelátory $x chemie $7 D002614
650    _2
$a cisplatina $x chemie $7 D002945
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a počítačová simulace $7 D003198
650    _2
$a cystein $x chemie $7 D003545
650    _2
$a ligandy $7 D008024
650    _2
$a methionin $x chemie $7 D008715
650    _2
$a molekulární modely $7 D008958
650    _2
$a statistické modely $7 D015233
650    _2
$a teoretické modely $7 D008962
650    _2
$a molekulární konformace $7 D008968
650    _2
$a dusík $x chemie $7 D009584
650    _2
$a software $7 D012984
650    _2
$a termodynamika $7 D013816
655    _2
$a financování organizované $7 D005381
700    1_
$a Chval, Zdeněk, $d 1971- $7 xx0044737
700    1_
$a Burda, Jaroslav. $7 stk2008441538
773    0_
$t Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical $w MED00008420 $g Roč. 113, č. 10 (2009), s. 3139-3150 $x 1520-6106
910    __
$a ABA008 $b sig $y 2
990    __
$a 20110720115042 $b ABA008
991    __
$a 20121113094647 $b ABA008
999    __
$a ok $b bmc $g 864016 $s 726380
BAS    __
$a 3
BMC    __
$a 2009 $x MED00008420 $b 113 $c 10 $d 3139-3150 $i 1520-6106 $m The journal of physical chemistry. B $n J Phys Chem B
LZP    __
$a 2011-3B09/BBjvme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...