• Je něco špatně v tomto záznamu ?

Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs

V. Munzarová, J. Pánek, S. Gunišová, I. Dányi, B. Szamecz, LS. Valášek,

. 2011 ; 7 (7) : e1002137. [pub] 20110707

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12022553

Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12022553
003      
CZ-PrNML
005      
20170131074833.0
007      
ta
008      
120806s2011 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1002137 $2 doi
035    __
$a (PubMed)21750682
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Munzarová, Vanda $u Laboratory of Regulation of Gene Expression, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
245    10
$a Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs / $c V. Munzarová, J. Pánek, S. Gunišová, I. Dányi, B. Szamecz, LS. Valášek,
520    9_
$a Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.
650    _2
$a 5' přiléhající oblast DNA $7 D024506
650    _2
$a 5' nepřekládaná oblast $7 D020121
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a transkripční faktory bZIP $x genetika $x metabolismus $7 D050976
650    _2
$a DNA vazebné proteiny $x genetika $x metabolismus $7 D004268
650    _2
$a zesilovače transkripce $7 D004742
650    _2
$a eukaryotický iniciační faktor 3 $x genetika $x metabolismus $7 D039621
650    _2
$a otevřené čtecí rámce $x genetika $7 D016366
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a regulační oblasti nukleových kyselin $7 D012045
650    _2
$a ribozomální proteiny $x genetika $x metabolismus $7 D012269
650    _2
$a malé podjednotky ribozomu eukaryotické $x genetika $x metabolismus $7 D054682
650    _2
$a ribozomy $x genetika $x metabolismus $7 D012270
650    _2
$a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
650    _2
$a transkripční faktory $x genetika $x metabolismus $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pánek, Josef
700    1_
$a Gunišová, Stanislava
700    1_
$a Dányi, István $7 xx0210357
700    1_
$a Szamecz, Béla
700    1_
$a Valášek, Leoš Shivaya
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 7, č. 7 (2011), s. e1002137
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21750682 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120806 $b ABA008
991    __
$a 20170131074957 $b ABA008
999    __
$a ok $b bmc $g 944466 $s 779850
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 7 $c 7 $d e1002137 $e 20110707 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
LZP    __
$a Pubmed-20120806/12/01

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace