-
Something wrong with this record ?
Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years
B. Koukalova, AP. Moraes, S. Renny-Byfield, R. Matyasek, AR. Leitch, A. Kovarik,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1902 to 1 year ago
Wiley Online Library (archiv)
from 1902-01-01 to 2012-12-31
Wiley Free Content
from 1997 to 1 year ago
- MeSH
- Time Factors MeSH
- Diploidy MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- In Situ Hybridization, Fluorescence MeSH
- Cloning, Molecular MeSH
- Polymerase Chain Reaction MeSH
- Polyploidy MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- DNA, Satellite genetics MeSH
- Blotting, Southern MeSH
- Nicotiana cytology genetics MeSH
- Inheritance Patterns genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12025989
- 003
- CZ-PrNML
- 005
- 20121210102946.0
- 007
- ta
- 008
- 120817s2010 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1111/j.1469-8137.2009.03101.x $2 doi
- 035 __
- $a (PubMed)19968801
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Koukalova, Blazena $u Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic.
- 245 10
- $a Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years / $c B. Koukalova, AP. Moraes, S. Renny-Byfield, R. Matyasek, AR. Leitch, A. Kovarik,
- 520 9_
- $a Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
- 650 _2
- $a Southernův blotting $7 D015139
- 650 _2
- $a klonování DNA $7 D003001
- 650 _2
- $a satelitní DNA $x genetika $7 D004276
- 650 _2
- $a diploidie $7 D004171
- 650 _2
- $a hybridizace in situ fluorescenční $7 D017404
- 650 _2
- $a typy dědičnosti $x genetika $7 D040582
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a polymerázová řetězová reakce $7 D016133
- 650 _2
- $a polyploidie $7 D011123
- 650 _2
- $a repetitivní sekvence nukleových kyselin $x genetika $7 D012091
- 650 _2
- $a druhová specificita $7 D013045
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a tabák $x cytologie $x genetika $7 D014026
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Moraes, Ana Paula
- 700 1_
- $a Renny-Byfield, Simon
- 700 1_
- $a Matyasek, Roman
- 700 1_
- $a Leitch, Andrew Rowland
- 700 1_
- $a Kovarik, Ales
- 773 0_
- $w MED00007692 $t The New phytologist $x 1469-8137 $g Roč. 186, č. 1 (2010), s. 148-60
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/19968801 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121210103022 $b ABA008
- 999 __
- $a ok $b bmc $g 948031 $s 783335
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 186 $c 1 $d 148-60 $i 1469-8137 $m New phytologist $n New Phytol $x MED00007692
- LZP __
- $a Pubmed-20120817/10/03