-
Something wrong with this record ?
Prediction of remission and low disease activity in disease-modifying anti-rheumatic drug-refractory patients with rheumatoid arthritis treated with golimumab
N. Vastesaeger, AG. Kutzbach, H. Amital, K. Pavelka, MA. Lazaro, RJ. Moots, J. Wollenhaupt, CA. Zerbini, I. Louw, B. Combe, A. Beaulieu, H. Schulze-Koops, B. Dasgupta, B. Fu, S. Huyck, HH. Weng, M. Govoni, P. Durez,
Language English Country England, Great Britain
Document type Clinical Trial, Journal Article, Multicenter Study
NLK
Free Medical Journals
from 1996 to 1 year ago
Open Access Digital Library
from 1996-01-01
Medline Complete (EBSCOhost)
from 1999-01-01 to 1 year ago
- MeSH
- Antirheumatic Agents therapeutic use MeSH
- Chronic Disease MeSH
- Remission Induction MeSH
- Middle Aged MeSH
- Humans MeSH
- Antibodies, Monoclonal therapeutic use MeSH
- Predictive Value of Tests MeSH
- Prospective Studies MeSH
- Regression Analysis MeSH
- Arthritis, Rheumatoid drug therapy MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
OBJECTIVE: To create a tool to predict probability of remission and low disease activity (LDA) in patients with RA being considered for anti-TNF treatment in clinical practice. METHODS: We analysed data from GO-MORE, an open-label, multinational, prospective study in biologic-naïve patients with active RA (DAS28-ESR ⩾3.2) despite DMARD therapy. Patients received 50 mg s.c. golimumab (GLM) once monthly for 6 months. In secondary analyses, regression models were used to determine the best set of baseline factors to predict remission (DAS28-ESR <2.6) at month 6 and LDA (DAS28-ESR ⩽3.2) at month 1. RESULTS: In 3280 efficacy-evaluable patients, of 12 factors included in initial regression models predicting remission or LDA, six were retained in final multivariable models. Greater likelihood of LDA and remission was associated with being male; younger age; lower HAQ, ESR (or CRP) and tender joint count (or swollen joint count) scores; and absence of comorbidities. In models predicting 1-, 3- and 6-month LDA or remission, area under the receiver operating curve was 0.648-0.809 (R(2) = 0.0397-0.1078). The models also predicted 6-month HAQ and EuroQoL-5-dimension scores. A series of matrices were developed to easily show predicted rates of remission and LDA. CONCLUSION: A matrix tool was developed to show predicted GLM treatment outcomes in patients with RA, based on a combination of six baseline characteristics. The tool could help provide practical guidance in selection of candidates for anti-TNF therapy.
Centre de Rhumatologie St Louis Québec Canada
Clinical Development Merck and Co Inc Kenilworth NJ USA
Departement de Rhumatologie Hôpital Lapeyronie Montpellier University Hospital Montpellier France
Department of Immunology MSD Italy Global Medical Affairs Rome Italy
Department of Medical Affairs MSD Danmark ApS Ballerup Denmark
Department of Rheumatology AGAR Francisco Marroquin University Guatemala City Guatemala
Department of Rheumatology Centro Paulista de Investigação Clinica São Paulo Brazil
Department of Rheumatology Clinical Sciences Centre University Hospital Aintree Liverpool UK
Department of Rheumatology Klinik für Rheumatologie Schön Klinik Hamburg Eilbek Hamburg Germany
Department of Rheumatology Southend University Hospital Westcliff on Sea Essex UK
Department of Rheumatology Université Catholique de Louvain Brussels Belgium
Institute of Rheumatology and Clinic of Rheumatology Charles University Prague Czech Republic
Instituto de Asistencia Reumatologica Integral Buenos Aires Argentina
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17024037
- 003
- CZ-PrNML
- 005
- 20170908103700.0
- 007
- ta
- 008
- 170720s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/rheumatology/kew179 $2 doi
- 035 __
- $a (PubMed)27114562
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Vastesaeger, Nathan $u Department of Medical Affairs, MSD Danmark ApS, Ballerup, Denmark nathan.vastesaeger@merck.com.
- 245 10
- $a Prediction of remission and low disease activity in disease-modifying anti-rheumatic drug-refractory patients with rheumatoid arthritis treated with golimumab / $c N. Vastesaeger, AG. Kutzbach, H. Amital, K. Pavelka, MA. Lazaro, RJ. Moots, J. Wollenhaupt, CA. Zerbini, I. Louw, B. Combe, A. Beaulieu, H. Schulze-Koops, B. Dasgupta, B. Fu, S. Huyck, HH. Weng, M. Govoni, P. Durez,
- 520 9_
- $a OBJECTIVE: To create a tool to predict probability of remission and low disease activity (LDA) in patients with RA being considered for anti-TNF treatment in clinical practice. METHODS: We analysed data from GO-MORE, an open-label, multinational, prospective study in biologic-naïve patients with active RA (DAS28-ESR ⩾3.2) despite DMARD therapy. Patients received 50 mg s.c. golimumab (GLM) once monthly for 6 months. In secondary analyses, regression models were used to determine the best set of baseline factors to predict remission (DAS28-ESR <2.6) at month 6 and LDA (DAS28-ESR ⩽3.2) at month 1. RESULTS: In 3280 efficacy-evaluable patients, of 12 factors included in initial regression models predicting remission or LDA, six were retained in final multivariable models. Greater likelihood of LDA and remission was associated with being male; younger age; lower HAQ, ESR (or CRP) and tender joint count (or swollen joint count) scores; and absence of comorbidities. In models predicting 1-, 3- and 6-month LDA or remission, area under the receiver operating curve was 0.648-0.809 (R(2) = 0.0397-0.1078). The models also predicted 6-month HAQ and EuroQoL-5-dimension scores. A series of matrices were developed to easily show predicted rates of remission and LDA. CONCLUSION: A matrix tool was developed to show predicted GLM treatment outcomes in patients with RA, based on a combination of six baseline characteristics. The tool could help provide practical guidance in selection of candidates for anti-TNF therapy.
- 650 _2
- $a monoklonální protilátky $x terapeutické užití $7 D000911
- 650 _2
- $a antirevmatika $x terapeutické užití $7 D018501
- 650 _2
- $a revmatoidní artritida $x farmakoterapie $7 D001172
- 650 _2
- $a chronická nemoc $7 D002908
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a prediktivní hodnota testů $7 D011237
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a indukce remise $7 D012074
- 650 _2
- $a výsledek terapie $7 D016896
- 655 _2
- $a klinické zkoušky $7 D016430
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a multicentrická studie $7 D016448
- 700 1_
- $a Kutzbach, Abraham Garcia $u Department of Rheumatology, AGAR Francisco Marroquin University, Guatemala City, Guatemala.
- 700 1_
- $a Amital, Howard $u Department of Internal Medicine B and Research Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. $7 gn_A_00005638
- 700 1_
- $a Pavelka, Karel $u Institute of Rheumatology and Clinic of Rheumatology, Charles University, Prague, Czech Republic.
- 700 1_
- $a Lazaro, María Alicia $u Instituto de Asistencia Reumatologica Integral, Buenos Aires, Argentina.
- 700 1_
- $a Moots, Robert J $u Department of Rheumatology, Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK.
- 700 1_
- $a Wollenhaupt, Jürgen $u Department of Rheumatology, Klinik für Rheumatologie, Schön Klinik Hamburg-Eilbek, Hamburg, Germany.
- 700 1_
- $a Zerbini, Cristiano A F $u Department of Rheumatology, Centro Paulista de Investigação Clinica, São Paulo, Brazil.
- 700 1_
- $a Louw, Ingrid $u Panorama Medical Centre, Cape Town, South Africa.
- 700 1_
- $a Combe, Bernard $u Departement de Rhumatologie, Hôpital Lapeyronie, Montpellier University Hospital, Montpellier, France.
- 700 1_
- $a Beaulieu, Andre $u Centre de Rhumatologie St-Louis, Québec, Canada.
- 700 1_
- $a Schulze-Koops, Hendrik $u Division of Rheumatology and Clinical Immunology, Department of Medicine IV, University of Munich, Munich, Germany.
- 700 1_
- $a Dasgupta, Bhaskar $u Department of Rheumatology, Southend University Hospital, Westcliff-on-Sea, Essex, UK.
- 700 1_
- $a Fu, Bo $u Department of Biostatistics.
- 700 1_
- $a Huyck, Susan $u Department of Biostatistics.
- 700 1_
- $a Weng, Haoling H $u Clinical Development, Merck & Co, Inc., Kenilworth, NJ, USA.
- 700 1_
- $a Govoni, Marinella $u Department of Immunology, MSD Italy, Global Medical Affairs, Rome, Italy.
- 700 1_
- $a Durez, Patrick $u Department of Rheumatology, Université Catholique de Louvain, Brussels, Belgium.
- 773 0_
- $w MED00011379 $t Rheumatology (Oxford, England) $x 1462-0332 $g Roč. 55, č. 8 (2016), s. 1466-76
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27114562 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170908104301 $b ABA008
- 999 __
- $a ok $b bmc $g 1239718 $s 984950
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 55 $c 8 $d 1466-76 $e 20160425 $i 1462-0332 $m Rheumatology $n Rheumatology (Oxford) $x MED00011379
- LZP __
- $a Pubmed-20170720