-
Je něco špatně v tomto záznamu ?
Method for resolution and quantification of components of the non-photochemical quenching (q (N))
K. Rohácek,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- časové faktory MeSH
- chlorofyl metabolismus MeSH
- fazol metabolismus MeSH
- fluorescence MeSH
- fotochemie metody MeSH
- kinetika MeSH
- kukuřice setá metabolismus MeSH
- listy rostlin metabolismus MeSH
- regresní analýza MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q (N)) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the "energy"-dependent (DeltapH-dependent) quenching (q (E)), the state-transition quenching (q (T)) and the photo/inhibitory quenching (q (I)) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q (N), as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F (V)) is used to define both q (N) and its components. All definitions as well as the algorithms for analytical recognition of the q (N) components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q (N) components (q (E), q (T), q (I)) as well as the half-times of relaxation (tau(1/2)) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q (N) = q (E) + q (T) + q (I). The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q (N) components from experimental data are also given.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026933
- 003
- CZ-PrNML
- 005
- 20160322080629.0
- 007
- ta
- 008
- 120816s2010 ne f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11120-010-9564-6 $2 doi
- 035 __
- $a (PubMed)20535559
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Roháček, Karel $u Biology Centre of the Academy of Sciences of the Czech Republic, p.r.i., Institute of Plant Molecular Biology, Branisovská 31, 370 05 Ceske Budejovice, Czech Republic. rohacek@umbr.cas.cz $7 _AN086460
- 245 10
- $a Method for resolution and quantification of components of the non-photochemical quenching (q (N)) / $c K. Rohácek,
- 520 9_
- $a A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q (N)) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the "energy"-dependent (DeltapH-dependent) quenching (q (E)), the state-transition quenching (q (T)) and the photo/inhibitory quenching (q (I)) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q (N), as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F (V)) is used to define both q (N) and its components. All definitions as well as the algorithms for analytical recognition of the q (N) components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q (N) components (q (E), q (T), q (I)) as well as the half-times of relaxation (tau(1/2)) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q (N) = q (E) + q (T) + q (I). The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q (N) components from experimental data are also given.
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a tma $7 D003624
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a fazol $x metabolismus $7 D027805
- 650 _2
- $a fotochemie $x metody $7 D010777
- 650 _2
- $a listy rostlin $x metabolismus $7 D018515
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a kukuřice setá $x metabolismus $7 D003313
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 105, č. 2 (2010), s. 101-113
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20535559 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160322080656 $b ABA008
- 999 __
- $a ok $b bmc $g 948975 $s 784279
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 105 $c 2 $d 101-113 $e 20100611 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
- LZP __
- $b NLK113 $a Pubmed-20120816/11/01