• Je něco špatně v tomto záznamu ?

Method for resolution and quantification of components of the non-photochemical quenching (q (N))

K. Rohácek,

. 2010 ; 105 (2) : 101-113. [pub] 20100611

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12026933
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q (N)) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the "energy"-dependent (DeltapH-dependent) quenching (q (E)), the state-transition quenching (q (T)) and the photo/inhibitory quenching (q (I)) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q (N), as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F (V)) is used to define both q (N) and its components. All definitions as well as the algorithms for analytical recognition of the q (N) components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q (N) components (q (E), q (T), q (I)) as well as the half-times of relaxation (tau(1/2)) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q (N) = q (E) + q (T) + q (I). The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q (N) components from experimental data are also given.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026933
003      
CZ-PrNML
005      
20160322080629.0
007      
ta
008      
120816s2010 ne f 000 0#eng||
009      
AR
024    7_
$a 10.1007/s11120-010-9564-6 $2 doi
035    __
$a (PubMed)20535559
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Roháček, Karel $u Biology Centre of the Academy of Sciences of the Czech Republic, p.r.i., Institute of Plant Molecular Biology, Branisovská 31, 370 05 Ceske Budejovice, Czech Republic. rohacek@umbr.cas.cz $7 _AN086460
245    10
$a Method for resolution and quantification of components of the non-photochemical quenching (q (N)) / $c K. Rohácek,
520    9_
$a A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q (N)) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the "energy"-dependent (DeltapH-dependent) quenching (q (E)), the state-transition quenching (q (T)) and the photo/inhibitory quenching (q (I)) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q (N), as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F (V)) is used to define both q (N) and its components. All definitions as well as the algorithms for analytical recognition of the q (N) components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q (N) components (q (E), q (T), q (I)) as well as the half-times of relaxation (tau(1/2)) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q (N) = q (E) + q (T) + q (I). The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q (N) components from experimental data are also given.
650    _2
$a chlorofyl $x metabolismus $7 D002734
650    _2
$a tma $7 D003624
650    _2
$a fluorescence $7 D005453
650    _2
$a kinetika $7 D007700
650    _2
$a fazol $x metabolismus $7 D027805
650    _2
$a fotochemie $x metody $7 D010777
650    _2
$a listy rostlin $x metabolismus $7 D018515
650    _2
$a regresní analýza $7 D012044
650    _2
$a časové faktory $7 D013997
650    _2
$a kukuřice setá $x metabolismus $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
773    0_
$w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 105, č. 2 (2010), s. 101-113
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20535559 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160322080656 $b ABA008
999    __
$a ok $b bmc $g 948975 $s 784279
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 105 $c 2 $d 101-113 $e 20100611 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
LZP    __
$b NLK113 $a Pubmed-20120816/11/01

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...