-
Something wrong with this record ?
Schizophrenia prediction with the adaboost algorithm
J. Hrdlicka, J. Klema,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21893814
Knihovny.cz E-resources
- MeSH
- Patient Compliance MeSH
- Algorithms MeSH
- Time Factors MeSH
- Behavior MeSH
- Diagnosis, Computer-Assisted methods MeSH
- Hospitalization MeSH
- Remote Consultation methods MeSH
- Humans MeSH
- Text Messaging MeSH
- Recurrence MeSH
- Program Development methods MeSH
- Schizophrenic Psychology MeSH
- Schizophrenia diagnosis prevention & control MeSH
- Software MeSH
- Decision Support Systems, Clinical MeSH
- Telemedicine methods MeSH
- Patient Readmission MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper presents an adaBoost approach for schizophrenia relapse prediction. The data for the adaBoost are extracted from patients answers to Early Warning Signs questionnaires sent regularly via mobile phone messages. The performance of the adaBoost algorithm is confronted with current ITAREPS system with sensitivity 0.65 and specificity 0.73. AdaBoost has the same sensitivity 0.65 but higher specificity 0.84 and is then ready to became the part of the ITAREPS care program.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12028068
- 003
- CZ-PrNML
- 005
- 20121207112639.0
- 007
- ta
- 008
- 120817s2011 ne f 000 0#eng||
- 009
- AR
- 035 __
- $a (PubMed)21893814
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hrdlicka, Jan $u Department of Cybernetics, Czech Technical University in Prague, The Czech Republic.
- 245 10
- $a Schizophrenia prediction with the adaboost algorithm / $c J. Hrdlicka, J. Klema,
- 520 9_
- $a This paper presents an adaBoost approach for schizophrenia relapse prediction. The data for the adaBoost are extracted from patients answers to Early Warning Signs questionnaires sent regularly via mobile phone messages. The performance of the adaBoost algorithm is confronted with current ITAREPS system with sensitivity 0.65 and specificity 0.73. AdaBoost has the same sensitivity 0.65 but higher specificity 0.84 and is then ready to became the part of the ITAREPS care program.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a chování $7 D001519
- 650 _2
- $a systémy pro podporu klinického rozhodování $7 D020000
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a hospitalizace $7 D006760
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a adherence pacienta $7 D010349
- 650 _2
- $a znovupřijetí pacienta $7 D010359
- 650 _2
- $a rozvoj plánování $x metody $7 D016730
- 650 _2
- $a recidiva $7 D012008
- 650 _2
- $a konzultace na dálku $x metody $7 D019114
- 650 _2
- $a schizofrenie $x diagnóza $x prevence a kontrola $7 D012559
- 650 _2
- $a schizofrenie (psychologie) $7 D012565
- 650 _2
- $a software $7 D012984
- 650 _2
- $a telemedicína $x metody $7 D017216
- 650 _2
- $a posílání textových zpráv $7 D060145
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Klema, Jiri
- 773 0_
- $w MED00180836 $t Studies in health technology and informatics $x 0926-9630 $g Roč. 169(2011), s. 574-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21893814 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121207112714 $b ABA008
- 999 __
- $a ok $b bmc $g 950110 $s 785414
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 169 $d 574-8 $i 0926-9630 $m Studies in health technology and informatics $n Stud Health Technol Inform $x MED00180836
- LZP __
- $a Pubmed-20120817/11/04