Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

M. Havlicek, KJ. Friston, J. Jan, M. Brazdil, VD. Calhoun,

. 2011 ; 56 (4) : 2109-28. [pub] 20110309

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12028418
003      
CZ-PrNML
005      
20230525141949.0
007      
ta
008      
120817s2011 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2011.03.005 $2 doi
035    __
$a (PubMed)21396454
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Havlíček, Martin. $7 xx0276470 $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. havlicekmartin@gmail.com
245    10
$a Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering / $c M. Havlicek, KJ. Friston, J. Jan, M. Brazdil, VD. Calhoun,
520    9_
$a This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain.
650    _2
$a algoritmy $7 D000465
650    _2
$a mozek $x krevní zásobení $x fyziologie $7 D001921
650    _2
$a hemodynamika $x fyziologie $7 D006439
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a modely neurologické $7 D008959
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a nervové dráhy $x fyziologie $7 D009434
650    _2
$a neurony $x fyziologie $7 D009474
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Friston, Karl J
700    1_
$a Jan, Jiří, $d 1941- $7 jn20000710059
700    1_
$a Brázdil, Milan
700    1_
$a Calhoun, Vince D
773    0_
$w MED00006575 $t Neuroimage $x 1095-9572 $g Roč. 56, č. 4 (2011), s. 2109-28
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21396454 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120817 $b ABA008
991    __
$a 20230525141944 $b ABA008
999    __
$a ok $b bmc $g 950460 $s 785764
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 56 $c 4 $d 2109-28 $e 20110309 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$a Pubmed-20120817/11/04

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...