-
Je něco špatně v tomto záznamu ?
Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data
A. Vetešník, AW. Gummer
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22559367
DOI
10.1121/1.3699207
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- deformace percepce fyziologie MeSH
- Fourierova analýza MeSH
- interferometrie metody MeSH
- kochlea fyziologie MeSH
- lasery MeSH
- lidé MeSH
- otoakustické emise spontánní fyziologie MeSH
- vibrace MeSH
- vnímání výšky zvuku fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
There is a long-lasting question of how distortion products (DPs) arising from nonlinear amplification processes in the cochlea are transmitted from their generation sites to the stapes. Two hypotheses have been proposed: (1) the slow-wave hypothesis whereby transmission is via the transverse pressure difference across the cochlear partition and (2) the fast-wave hypothesis proposing transmission via longitudinal compression waves. Ren with co-workers have addressed this topic experimentally by measuring the spatial vibration pattern of the basilar membrane (BM) in response to two tones of frequency f(1) and f(2). They interpreted the observed negative phase slopes of the stationary BM vibrations at the cubic distortion frequency f(DP) = 2f(1) - f(2) as evidence for the fast-wave hypothesis. Here, using a physically based model, it is shown that their phase data is actually in accordance with the slow-wave hypothesis. The analysis is based on a frequency-domain formulation of the two-dimensional motion equation of a nonlinear hydrodynamic cochlea model. Application of the analysis to their experimental data suggests that the measurement sites of negative phase slope were located at or apical to the DP generation sites. Therefore, current experimental and theoretical evidence supports the slow-wave hypothesis. Nevertheless, the analysis does not allow rejection of the fast-wave hypothesis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034525
- 003
- CZ-PrNML
- 005
- 20160608123340.0
- 007
- ta
- 008
- 121023s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1121/1.3699207 $2 doi
- 035 __
- $a (PubMed)22559367
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vetešník, Aleš $u Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Břehová 7, 115 19 Prague 1, Czech Republic $7 xx0120146
- 245 10
- $a Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data / $c A. Vetešník, AW. Gummer
- 520 9_
- $a There is a long-lasting question of how distortion products (DPs) arising from nonlinear amplification processes in the cochlea are transmitted from their generation sites to the stapes. Two hypotheses have been proposed: (1) the slow-wave hypothesis whereby transmission is via the transverse pressure difference across the cochlear partition and (2) the fast-wave hypothesis proposing transmission via longitudinal compression waves. Ren with co-workers have addressed this topic experimentally by measuring the spatial vibration pattern of the basilar membrane (BM) in response to two tones of frequency f(1) and f(2). They interpreted the observed negative phase slopes of the stationary BM vibrations at the cubic distortion frequency f(DP) = 2f(1) - f(2) as evidence for the fast-wave hypothesis. Here, using a physically based model, it is shown that their phase data is actually in accordance with the slow-wave hypothesis. The analysis is based on a frequency-domain formulation of the two-dimensional motion equation of a nonlinear hydrodynamic cochlea model. Application of the analysis to their experimental data suggests that the measurement sites of negative phase slope were located at or apical to the DP generation sites. Therefore, current experimental and theoretical evidence supports the slow-wave hypothesis. Nevertheless, the analysis does not allow rejection of the fast-wave hypothesis.
- 650 _2
- $a kochlea $x fyziologie $7 D003051
- 650 _2
- $a Fourierova analýza $7 D005583
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interferometrie $x metody $7 D007368
- 650 _2
- $a lasery $7 D007834
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a otoakustické emise spontánní $x fyziologie $7 D017084
- 650 _2
- $a deformace percepce $x fyziologie $7 D010469
- 650 _2
- $a vnímání výšky zvuku $x fyziologie $7 D010898
- 650 _2
- $a vibrace $7 D014732
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gummer, Anthony W. $u Eberhard Karls University Tübingen, Faculty of Medicine, Section of Physiological Acoustics and Communication, Elfriede-Aulhorn-Straβe 5, 72076 Tübingen, Germany
- 773 0_
- $w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 131, č. 5 (2012), s. 3914-3934
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22559367 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20160608123115 $b ABA008
- 999 __
- $a ok $b bmc $g 956535 $s 792022
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 131 $c 5 $d 3914-3934 $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
- LZP __
- $b NLK112 $a Pubmed-20121023