-
Je něco špatně v tomto záznamu ?
An automated analysis of highly complex flow cytometry-based proteomic data
J. Stuchlý, V. Kanderová, K. Fišer, D. Cerná, A. Holm, W. Wu, O. Hrušák, F. Lund-Johansen, T. Kalina,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NS10473
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Free Medical Journals
od 2003 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2012-06-01 do Před 1 rokem
Wiley Online Library (archiv)
od 1980-01-01 do 2012-12-31
Wiley Free Content
od 2003 do Před 1 rokem
PubMed
22213549
DOI
10.1002/cyto.a.22011
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- automatizace MeSH
- barva MeSH
- bcr-abl fúzní proteiny metabolismus MeSH
- časové faktory MeSH
- databáze proteinů MeSH
- gelová chromatografie MeSH
- lidé MeSH
- mikrosféry MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny metabolismus MeSH
- piperaziny farmakologie MeSH
- proteom metabolismus MeSH
- proteomika metody MeSH
- průtoková cytometrie metody MeSH
- pyrimidiny farmakologie MeSH
- referenční standardy MeSH
- řízení kvality MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The combination of color-coded microspheres as carriers and flow cytometry as a detection platform provides new opportunities for multiplexed measurement of biomolecules. Here, we developed a software tool capable of automated gating of color-coded microspheres, automatic extraction of statistics from all subsets and validation, normalization, and cross-sample analysis. The approach presented in this article enabled us to harness the power of high-content cellular proteomics. In size exclusion chromatography-resolved microsphere-based affinity proteomics (Size-MAP), antibody-coupled microspheres are used to measure biotinylated proteins that have been separated by size exclusion chromatography. The captured proteins are labeled with streptavidin phycoerythrin and detected by multicolor flow cytometry. When the results from multiple size exclusion chromatography fractions are combined, binding is detected as discrete reactivity peaks (entities). The information obtained might be approximated to a multiplexed western blot. We used a microsphere set with >1,000 subsets, presenting an approach to extract biologically relevant information. The R-project environment was used to sequentially recognize subsets in two-dimensional space and gate them. The aim was to extract the median streptavidin phycoerythrin fluorescence intensity for all 1,000+ microsphere subsets from a series of 96 measured samples. The resulting text files were subjected to algorithms that identified entities across the 24 fractions. Thus, the original 24 data points for each antibody were compressed to 1-4 integrated values representing the areas of individual antibody reactivity peaks. Finally, we provide experimental data on cellular protein changes induced by treatment of leukemia cells with imatinib mesylate. The approach presented here exemplifies how large-scale flow cytometry data analysis can be efficiently processed to employ flow cytometry as a high-content proteomics method.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034810
- 003
- CZ-PrNML
- 005
- 20141014100910.0
- 007
- ta
- 008
- 121023s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/cyto.a.22011 $2 doi
- 035 __
- $a (PubMed)22213549
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Stuchlý, Jan $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic.
- 245 13
- $a An automated analysis of highly complex flow cytometry-based proteomic data / $c J. Stuchlý, V. Kanderová, K. Fišer, D. Cerná, A. Holm, W. Wu, O. Hrušák, F. Lund-Johansen, T. Kalina,
- 520 9_
- $a The combination of color-coded microspheres as carriers and flow cytometry as a detection platform provides new opportunities for multiplexed measurement of biomolecules. Here, we developed a software tool capable of automated gating of color-coded microspheres, automatic extraction of statistics from all subsets and validation, normalization, and cross-sample analysis. The approach presented in this article enabled us to harness the power of high-content cellular proteomics. In size exclusion chromatography-resolved microsphere-based affinity proteomics (Size-MAP), antibody-coupled microspheres are used to measure biotinylated proteins that have been separated by size exclusion chromatography. The captured proteins are labeled with streptavidin phycoerythrin and detected by multicolor flow cytometry. When the results from multiple size exclusion chromatography fractions are combined, binding is detected as discrete reactivity peaks (entities). The information obtained might be approximated to a multiplexed western blot. We used a microsphere set with >1,000 subsets, presenting an approach to extract biologically relevant information. The R-project environment was used to sequentially recognize subsets in two-dimensional space and gate them. The aim was to extract the median streptavidin phycoerythrin fluorescence intensity for all 1,000+ microsphere subsets from a series of 96 measured samples. The resulting text files were subjected to algorithms that identified entities across the 24 fractions. Thus, the original 24 data points for each antibody were compressed to 1-4 integrated values representing the areas of individual antibody reactivity peaks. Finally, we provide experimental data on cellular protein changes induced by treatment of leukemia cells with imatinib mesylate. The approach presented here exemplifies how large-scale flow cytometry data analysis can be efficiently processed to employ flow cytometry as a high-content proteomics method.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a automatizace $7 D001331
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a gelová chromatografie $7 D002850
- 650 _2
- $a barva $7 D003116
- 650 _2
- $a databáze proteinů $7 D030562
- 650 _2
- $a průtoková cytometrie $x metody $7 D005434
- 650 _2
- $a bcr-abl fúzní proteiny $x metabolismus $7 D016044
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikrosféry $7 D008863
- 650 _2
- $a nádorové proteiny $x metabolismus $7 D009363
- 650 _2
- $a piperaziny $x farmakologie $7 D010879
- 650 _2
- $a proteom $x metabolismus $7 D020543
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a pyrimidiny $x farmakologie $7 D011743
- 650 _2
- $a řízení kvality $7 D011786
- 650 _2
- $a referenční standardy $7 D012015
- 650 _2
- $a software $7 D012984
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kanderová, Veronika
- 700 1_
- $a Fišer, Karel
- 700 1_
- $a Cerná, Daniela
- 700 1_
- $a Holm, Anders
- 700 1_
- $a Wu, Weiwei
- 700 1_
- $a Hrušák, Ondřej
- 700 1_
- $a Lund-Johansen, Fridtjof
- 700 1_
- $a Kalina, Tomáš
- 773 0_
- $w MED00013935 $t Cytometry. Part A : the journal of the International Society for Analytical Cytology $x 1552-4930 $g Roč. 81, č. 2 (2012), s. 120-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22213549 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20141014101303 $b ABA008
- 999 __
- $a ok $b bmc $g 956820 $s 792307
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 81 $c 2 $d 120-9 $i 1552-4930 $m Cytometry. Part A $n Cytometry A $x MED00013935
- GRA __
- $a NS10473 $p MZ0
- LZP __
- $a Pubmed-20121023