• Something wrong with this record ?

An automated analysis of highly complex flow cytometry-based proteomic data

J. Stuchlý, V. Kanderová, K. Fišer, D. Cerná, A. Holm, W. Wu, O. Hrušák, F. Lund-Johansen, T. Kalina,

. 2012 ; 81 (2) : 120-9.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NS10473 MZ0 CEP Register

Digital library NLK
Full text - Article
Source

E-resources Online Full text

NLK Free Medical Journals from 2003 to 1 year ago
Medline Complete (EBSCOhost) from 2012-06-01 to 1 year ago
Wiley Online Library (archiv) from 1980-01-01 to 2012-12-31
Wiley Free Content from 2003 to 1 year ago

The combination of color-coded microspheres as carriers and flow cytometry as a detection platform provides new opportunities for multiplexed measurement of biomolecules. Here, we developed a software tool capable of automated gating of color-coded microspheres, automatic extraction of statistics from all subsets and validation, normalization, and cross-sample analysis. The approach presented in this article enabled us to harness the power of high-content cellular proteomics. In size exclusion chromatography-resolved microsphere-based affinity proteomics (Size-MAP), antibody-coupled microspheres are used to measure biotinylated proteins that have been separated by size exclusion chromatography. The captured proteins are labeled with streptavidin phycoerythrin and detected by multicolor flow cytometry. When the results from multiple size exclusion chromatography fractions are combined, binding is detected as discrete reactivity peaks (entities). The information obtained might be approximated to a multiplexed western blot. We used a microsphere set with >1,000 subsets, presenting an approach to extract biologically relevant information. The R-project environment was used to sequentially recognize subsets in two-dimensional space and gate them. The aim was to extract the median streptavidin phycoerythrin fluorescence intensity for all 1,000+ microsphere subsets from a series of 96 measured samples. The resulting text files were subjected to algorithms that identified entities across the 24 fractions. Thus, the original 24 data points for each antibody were compressed to 1-4 integrated values representing the areas of individual antibody reactivity peaks. Finally, we provide experimental data on cellular protein changes induced by treatment of leukemia cells with imatinib mesylate. The approach presented here exemplifies how large-scale flow cytometry data analysis can be efficiently processed to employ flow cytometry as a high-content proteomics method.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034810
003      
CZ-PrNML
005      
20141014100910.0
007      
ta
008      
121023s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/cyto.a.22011 $2 doi
035    __
$a (PubMed)22213549
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Stuchlý, Jan $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic.
245    13
$a An automated analysis of highly complex flow cytometry-based proteomic data / $c J. Stuchlý, V. Kanderová, K. Fišer, D. Cerná, A. Holm, W. Wu, O. Hrušák, F. Lund-Johansen, T. Kalina,
520    9_
$a The combination of color-coded microspheres as carriers and flow cytometry as a detection platform provides new opportunities for multiplexed measurement of biomolecules. Here, we developed a software tool capable of automated gating of color-coded microspheres, automatic extraction of statistics from all subsets and validation, normalization, and cross-sample analysis. The approach presented in this article enabled us to harness the power of high-content cellular proteomics. In size exclusion chromatography-resolved microsphere-based affinity proteomics (Size-MAP), antibody-coupled microspheres are used to measure biotinylated proteins that have been separated by size exclusion chromatography. The captured proteins are labeled with streptavidin phycoerythrin and detected by multicolor flow cytometry. When the results from multiple size exclusion chromatography fractions are combined, binding is detected as discrete reactivity peaks (entities). The information obtained might be approximated to a multiplexed western blot. We used a microsphere set with >1,000 subsets, presenting an approach to extract biologically relevant information. The R-project environment was used to sequentially recognize subsets in two-dimensional space and gate them. The aim was to extract the median streptavidin phycoerythrin fluorescence intensity for all 1,000+ microsphere subsets from a series of 96 measured samples. The resulting text files were subjected to algorithms that identified entities across the 24 fractions. Thus, the original 24 data points for each antibody were compressed to 1-4 integrated values representing the areas of individual antibody reactivity peaks. Finally, we provide experimental data on cellular protein changes induced by treatment of leukemia cells with imatinib mesylate. The approach presented here exemplifies how large-scale flow cytometry data analysis can be efficiently processed to employ flow cytometry as a high-content proteomics method.
650    _2
$a algoritmy $7 D000465
650    _2
$a automatizace $7 D001331
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a gelová chromatografie $7 D002850
650    _2
$a barva $7 D003116
650    _2
$a databáze proteinů $7 D030562
650    _2
$a průtoková cytometrie $x metody $7 D005434
650    _2
$a bcr-abl fúzní proteiny $x metabolismus $7 D016044
650    _2
$a lidé $7 D006801
650    _2
$a mikrosféry $7 D008863
650    _2
$a nádorové proteiny $x metabolismus $7 D009363
650    _2
$a piperaziny $x farmakologie $7 D010879
650    _2
$a proteom $x metabolismus $7 D020543
650    _2
$a proteomika $x metody $7 D040901
650    _2
$a pyrimidiny $x farmakologie $7 D011743
650    _2
$a řízení kvality $7 D011786
650    _2
$a referenční standardy $7 D012015
650    _2
$a software $7 D012984
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kanderová, Veronika
700    1_
$a Fišer, Karel
700    1_
$a Cerná, Daniela
700    1_
$a Holm, Anders
700    1_
$a Wu, Weiwei
700    1_
$a Hrušák, Ondřej
700    1_
$a Lund-Johansen, Fridtjof
700    1_
$a Kalina, Tomáš
773    0_
$w MED00013935 $t Cytometry. Part A : the journal of the International Society for Analytical Cytology $x 1552-4930 $g Roč. 81, č. 2 (2012), s. 120-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22213549 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20121023 $b ABA008
991    __
$a 20141014101303 $b ABA008
999    __
$a ok $b bmc $g 956820 $s 792307
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 81 $c 2 $d 120-9 $i 1552-4930 $m Cytometry. Part A $n Cytometry A $x MED00013935
GRA    __
$a NS10473 $p MZ0
LZP    __
$a Pubmed-20121023

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...