Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Using computational models to relate structural and functional brain connectivity

J. Hlinka, S. Coombes,

. 2012 ; 36 (2) : 2137-45.

Jazyk angličtina Země Francie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13000654

Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13000654
003      
CZ-PrNML
005      
20130111101449.0
007      
ta
008      
130108s2012 fr f 000 0|eng||
009      
AR
024    7_
$a 10.1111/j.1460-9568.2012.08081.x $2 doi
035    __
$a (PubMed)22805059
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a fr
100    1_
$a Hlinka, Jaroslav $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 271/2, 182 07 Prague 8, Czech Republic. hlinka@cs.cas.cz
245    10
$a Using computational models to relate structural and functional brain connectivity / $c J. Hlinka, S. Coombes,
520    9_
$a Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a lidé $7 D006801
650    _2
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x fyziologie $7 D009415
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Coombes, Stephen
773    0_
$w MED00011483 $t The European journal of neuroscience $x 1460-9568 $g Roč. 36, č. 2 (2012), s. 2137-45
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22805059 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130108 $b ABA008
991    __
$a 20130111101556 $b ABA008
999    __
$a ok $b bmc $g 963436 $s 798818
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 36 $c 2 $d 2137-45 $i 1460-9568 $m European journal of neuroscience $n Eur J Neurosci $x MED00011483
LZP    __
$a Pubmed-20130108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...