-
Je něco špatně v tomto záznamu ?
Using computational models to relate structural and functional brain connectivity
J. Hlinka, S. Coombes,
Jazyk angličtina Země Francie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Medline Complete (EBSCOhost)
od 1998-01-01 do Před 1 rokem
Wiley Online Library (archiv)
od 1997-01-01 do 2012-12-31
- MeSH
- lidé MeSH
- modely neurologické MeSH
- mozek fyziologie MeSH
- nervová síť fyziologie MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000654
- 003
- CZ-PrNML
- 005
- 20130111101449.0
- 007
- ta
- 008
- 130108s2012 fr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/j.1460-9568.2012.08081.x $2 doi
- 035 __
- $a (PubMed)22805059
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a fr
- 100 1_
- $a Hlinka, Jaroslav $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 271/2, 182 07 Prague 8, Czech Republic. hlinka@cs.cas.cz
- 245 10
- $a Using computational models to relate structural and functional brain connectivity / $c J. Hlinka, S. Coombes,
- 520 9_
- $a Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a nervová síť $x fyziologie $7 D009415
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Coombes, Stephen
- 773 0_
- $w MED00011483 $t The European journal of neuroscience $x 1460-9568 $g Roč. 36, č. 2 (2012), s. 2137-45
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22805059 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130111101556 $b ABA008
- 999 __
- $a ok $b bmc $g 963436 $s 798818
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 36 $c 2 $d 2137-45 $i 1460-9568 $m European journal of neuroscience $n Eur J Neurosci $x MED00011483
- LZP __
- $a Pubmed-20130108