-
Je něco špatně v tomto záznamu ?
Classification of metabolic patients using dynamic variables
S Svacina, T Haas, M Matoulek, K Nedelnikova
Jazyk angličtina Země Nizozemsko
Grantová podpora
IZ4186
MZ0
CEP - Centrální evidence projektů
PubMed
10724967
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 2. typu * diagnóza klasifikace terapie MeSH
- diabetes mellitus diagnóza klasifikace terapie MeSH
- inzulinová rezistence * MeSH
- lidé MeSH
- obezita MeSH
- počítačová simulace * MeSH
- prognóza MeSH
- teoretické modely * MeSH
- Check Tag
- lidé MeSH
The severity of metabolic syndrome is usually determined according to static variables (blood glucose, insulin level, body mass index etc.) The most important classification is dynamic and prognostic classification which can be used to determine the ability to decrease elevated metabolite and hormone levels or to lose weight. Different mathematical approaches were used to determine these phenomena: 1. Mathematical modelling e.g. (Bergman minimal model or glycation model). 2. Predictive calculations using multiple regression (using static and dynamic parameters to determine weight loss in obesity treatment). 3. One day starvation test (finding very variable hormone and metabolic changes in obese patients). We can conclude There are 3 types of metabolic parameters: A. Static (basic) description, B. Functional (actual) description, C. Dynamic-stability describing variables. Mathematical modelling is a complicated method needing many blood samples. It is very invasive for patients and it is difficult to be repeated. Predictive importance can have also repeated measured metabolic data which are able to classify the stability (fixation) of metabolic state. Some basic parameters and simple dynamic tests like one day starvation test can be used in prognostic classification of patients who are able to change their fixed metabolic state.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13011374
- 003
- CZ-PrNML
- 005
- 20130328144524.0
- 007
- ta
- 008
- 130328s1999 ne f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)10724967
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Svačina, Štěpán, $d 1952- $7 jn20000402316 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
- 245 10
- $a Classification of metabolic patients using dynamic variables / $c S Svacina, T Haas, M Matoulek, K Nedelnikova
- 520 9_
- $a The severity of metabolic syndrome is usually determined according to static variables (blood glucose, insulin level, body mass index etc.) The most important classification is dynamic and prognostic classification which can be used to determine the ability to decrease elevated metabolite and hormone levels or to lose weight. Different mathematical approaches were used to determine these phenomena: 1. Mathematical modelling e.g. (Bergman minimal model or glycation model). 2. Predictive calculations using multiple regression (using static and dynamic parameters to determine weight loss in obesity treatment). 3. One day starvation test (finding very variable hormone and metabolic changes in obese patients). We can conclude There are 3 types of metabolic parameters: A. Static (basic) description, B. Functional (actual) description, C. Dynamic-stability describing variables. Mathematical modelling is a complicated method needing many blood samples. It is very invasive for patients and it is difficult to be repeated. Predictive importance can have also repeated measured metabolic data which are able to classify the stability (fixation) of metabolic state. Some basic parameters and simple dynamic tests like one day starvation test can be used in prognostic classification of patients who are able to change their fixed metabolic state.
- 590 __
- $a bohemika - dle Pubmed
- 650 12
- $a počítačová simulace $7 D003198
- 650 02
- $a diabetes mellitus $x diagnóza $x klasifikace $x terapie $7 D003920
- 650 12
- $a diabetes mellitus 2. typu $x diagnóza $x klasifikace $x terapie $7 D003924
- 650 02
- $a lidé $7 D006801
- 650 12
- $a inzulinová rezistence $7 D007333
- 650 12
- $a teoretické modely $7 D008962
- 650 02
- $a obezita $7 D009765
- 650 02
- $a prognóza $7 D011379
- 700 1_
- $a Haas, Tomáš $7 xx0047240 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
- 700 1_
- $a Matoulek, Martin, $d 1972- $7 xx0080325 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
- 700 1_
- $a Owen, Klára, $d 1972- $7 xx0011436 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
- 773 0_
- $t Studies in health technology and informatics $x 0926-9630 $g č. 68 (1999), s. 636-638 $p Stud Health Technol Inform $w MED00180836
- 910 __
- $a ABA008 $y 4 $z 0
- 990 __
- $a 20130328095213 $b ABA008
- 991 __
- $a 20130328144747 $b ABA008
- 999 __
- $a ok $b bmc $g 974412 $s 809646
- BAS __
- $a 3
- BMC __
- $a 1999 $c 68 $d 636-638 $i 0926-9630 $m Studies in health technology and informatics $x MED00180836 $n Stud Health Technol Inform
- GRA __
- $a IZ4186 $p MZ0
- LZP __
- $a NLK 2013-03/lpbo