Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Classification of metabolic patients using dynamic variables

S Svacina, T Haas, M Matoulek, K Nedelnikova

. 1999 ; (68) : 636-638.

Jazyk angličtina Země Nizozemsko

Perzistentní odkaz   https://www.medvik.cz/link/bmc13011374

Grantová podpora
IZ4186 MZ0 CEP - Centrální evidence projektů

The severity of metabolic syndrome is usually determined according to static variables (blood glucose, insulin level, body mass index etc.) The most important classification is dynamic and prognostic classification which can be used to determine the ability to decrease elevated metabolite and hormone levels or to lose weight. Different mathematical approaches were used to determine these phenomena: 1. Mathematical modelling e.g. (Bergman minimal model or glycation model). 2. Predictive calculations using multiple regression (using static and dynamic parameters to determine weight loss in obesity treatment). 3. One day starvation test (finding very variable hormone and metabolic changes in obese patients). We can conclude There are 3 types of metabolic parameters: A. Static (basic) description, B. Functional (actual) description, C. Dynamic-stability describing variables. Mathematical modelling is a complicated method needing many blood samples. It is very invasive for patients and it is difficult to be repeated. Predictive importance can have also repeated measured metabolic data which are able to classify the stability (fixation) of metabolic state. Some basic parameters and simple dynamic tests like one day starvation test can be used in prognostic classification of patients who are able to change their fixed metabolic state.

000      
00000naa a2200000 a 4500
001      
bmc13011374
003      
CZ-PrNML
005      
20130328144524.0
007      
ta
008      
130328s1999 ne f 000 0|eng||
009      
AR
035    __
$a (PubMed)10724967
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a ne
100    1_
$a Svačina, Štěpán, $d 1952- $7 jn20000402316 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
245    10
$a Classification of metabolic patients using dynamic variables / $c S Svacina, T Haas, M Matoulek, K Nedelnikova
520    9_
$a The severity of metabolic syndrome is usually determined according to static variables (blood glucose, insulin level, body mass index etc.) The most important classification is dynamic and prognostic classification which can be used to determine the ability to decrease elevated metabolite and hormone levels or to lose weight. Different mathematical approaches were used to determine these phenomena: 1. Mathematical modelling e.g. (Bergman minimal model or glycation model). 2. Predictive calculations using multiple regression (using static and dynamic parameters to determine weight loss in obesity treatment). 3. One day starvation test (finding very variable hormone and metabolic changes in obese patients). We can conclude There are 3 types of metabolic parameters: A. Static (basic) description, B. Functional (actual) description, C. Dynamic-stability describing variables. Mathematical modelling is a complicated method needing many blood samples. It is very invasive for patients and it is difficult to be repeated. Predictive importance can have also repeated measured metabolic data which are able to classify the stability (fixation) of metabolic state. Some basic parameters and simple dynamic tests like one day starvation test can be used in prognostic classification of patients who are able to change their fixed metabolic state.
590    __
$a bohemika - dle Pubmed
650    12
$a počítačová simulace $7 D003198
650    02
$a diabetes mellitus $x diagnóza $x klasifikace $x terapie $7 D003920
650    12
$a diabetes mellitus 2. typu $x diagnóza $x klasifikace $x terapie $7 D003924
650    02
$a lidé $7 D006801
650    12
$a inzulinová rezistence $7 D007333
650    12
$a teoretické modely $7 D008962
650    02
$a obezita $7 D009765
650    02
$a prognóza $7 D011379
700    1_
$a Haas, Tomáš $7 xx0047240 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
700    1_
$a Matoulek, Martin, $d 1972- $7 xx0080325 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
700    1_
$a Owen, Klára, $d 1972- $7 xx0011436 $u Charles University, 1st Medical Faculty, Prague, Czech Republic.
773    0_
$t Studies in health technology and informatics $x 0926-9630 $g č. 68 (1999), s. 636-638 $p Stud Health Technol Inform $w MED00180836
910    __
$a ABA008 $y 4 $z 0
990    __
$a 20130328095213 $b ABA008
991    __
$a 20130328144747 $b ABA008
999    __
$a ok $b bmc $g 974412 $s 809646
BAS    __
$a 3
BMC    __
$a 1999 $c 68 $d 636-638 $i 0926-9630 $m Studies in health technology and informatics $x MED00180836 $n Stud Health Technol Inform
GRA    __
$a IZ4186 $p MZ0
LZP    __
$a NLK 2013-03/lpbo

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...