• Je něco špatně v tomto záznamu ?

Chromosomes in the flow to simplify genome analysis

J. Doležel, J. Vrána, J. Safář, J. Bartoš, M. Kubaláková, H. Simková,

. 2012 ; 12 (3) : 397-416.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012534
E-zdroje Online Plný text

NLK ProQuest Central od 2002-04-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2003-07-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-04-01 do Před 1 rokem
Public Health Database (ProQuest) od 2002-04-01 do Před 1 rokem

Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13012534
003      
CZ-PrNML
005      
20130411094601.0
007      
ta
008      
130404s2012 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10142-012-0293-0 $2 doi
035    __
$a (PubMed)22895700
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Doležel, Jaroslav $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic. dolezel@ueb.cas.cz
245    10
$a Chromosomes in the flow to simplify genome analysis / $c J. Doležel, J. Vrána, J. Safář, J. Bartoš, M. Kubaláková, H. Simková,
520    9_
$a Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
650    _2
$a zvířata $7 D000818
650    _2
$a malování chromozomů $x metody $7 D020223
650    _2
$a struktury chromozomu $x chemie $x genetika $7 D022004
650    _2
$a chromozomy $x chemie $x genetika $7 D002875
650    _2
$a průtoková cytometrie $x metody $7 D005434
650    _2
$a genová knihovna $7 D015723
650    _2
$a genom lidský $7 D015894
650    _2
$a genomika $x metody $7 D023281
650    _2
$a lidé $7 D006801
650    _2
$a karyotyp $7 D059785
650    _2
$a mitóza $7 D008938
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $7 D020411
650    _2
$a fyzikální mapování chromozomů $x metody $7 D020161
650    _2
$a rostliny $x chemie $x genetika $7 D010944
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Vrána, Jan $u -
700    1_
$a Safář, Jan $u -
700    1_
$a Bartoš, Jan $u -
700    1_
$a Kubaláková, Marie $u -
700    1_
$a Simková, Hana $u -
773    0_
$w MED00005741 $t Functional & integrative genomics $x 1438-7948 $g Roč. 12, č. 3 (2012), s. 397-416
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22895700 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20130411094831 $b ABA008
999    __
$a ok $b bmc $g 975732 $s 810815
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 12 $c 3 $d 397-416 $i 1438-7948 $m Functional & integrative genomics $n Funct Integr Genomics $x MED00005741
LZP    __
$a Pubmed-20130404

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace