• Je něco špatně v tomto záznamu ?

Influence of light on carbon utilization in aerobic anoxygenic phototrophs

D. Hauruseu, M. Koblížek,

. 2012 ; 78 (20) : 7414-9.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012546
E-zdroje Online Plný text

NLK Free Medical Journals od 1976 do Před 6 měsíci
PubMed Central od 1976 do Před 6 měsíci
Europe PubMed Central od 1976 do Před 6 měsíci
Open Access Digital Library od 1953-01-01

Aerobic anoxygenic phototrophs contain photosynthetic reaction centers composed of bacteriochlorophyll. These organisms are photoheterotrophs, as they require organic carbon substrates for their growth whereas light-derived energy has only an auxiliary function. To establish the contribution of light energy to their metabolism, we grew the phototrophic strain Erythrobacter sp. NAP1 in a carbon-limited chemostat regimen on defined carbon sources (glutamate, pyruvate, acetate, and glucose) under conditions of different light intensities. When grown in a light-dark cycle, these bacteria accumulated 25% to 110% more biomass in terms of carbon than cultures grown in the dark. Cultures grown on glutamate accumulated the most biomass at moderate light intensities of 50 to 150 μmol m(-2) s(-1) but were inhibited at higher light intensities. In the case of pyruvate, we did not find any inhibition of growth by high irradiance. The extent of anaplerotic carbon fixation was detemined by radioactive bicarbonate incorporation assays. While the carboxylation activity provided 4% to 11% of the cellular carbon in the pyruvate-grown culture, in the glutamate-grown cells it provided only approximately 1% of the carbon. Additionally, we tested the effect of light on respiration and photosynthetic electron flow. With increasing light intensity, respiration decreased to approximately 25% of its dark value and was replaced by photophosphorylation. The additional energy from light allows the aerobic anoxygenic phototrophs to accumulate the supplied organic carbon which would otherwise be respired. The higher efficiency of organic carbon utilization may provide an important competitive advantage during growth under carbon-limited conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13012546
003      
CZ-PrNML
005      
20130409095601.0
007      
ta
008      
130404s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/aem.01747-12 $2 doi
035    __
$a (PubMed)22885759
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hauruseu, Dzmitry $u Institute of Microbiology CAS, Department of Phototrophic Microorganisms-Algatech, Třeboň, Czech Republic.
245    10
$a Influence of light on carbon utilization in aerobic anoxygenic phototrophs / $c D. Hauruseu, M. Koblížek,
520    9_
$a Aerobic anoxygenic phototrophs contain photosynthetic reaction centers composed of bacteriochlorophyll. These organisms are photoheterotrophs, as they require organic carbon substrates for their growth whereas light-derived energy has only an auxiliary function. To establish the contribution of light energy to their metabolism, we grew the phototrophic strain Erythrobacter sp. NAP1 in a carbon-limited chemostat regimen on defined carbon sources (glutamate, pyruvate, acetate, and glucose) under conditions of different light intensities. When grown in a light-dark cycle, these bacteria accumulated 25% to 110% more biomass in terms of carbon than cultures grown in the dark. Cultures grown on glutamate accumulated the most biomass at moderate light intensities of 50 to 150 μmol m(-2) s(-1) but were inhibited at higher light intensities. In the case of pyruvate, we did not find any inhibition of growth by high irradiance. The extent of anaplerotic carbon fixation was detemined by radioactive bicarbonate incorporation assays. While the carboxylation activity provided 4% to 11% of the cellular carbon in the pyruvate-grown culture, in the glutamate-grown cells it provided only approximately 1% of the carbon. Additionally, we tested the effect of light on respiration and photosynthetic electron flow. With increasing light intensity, respiration decreased to approximately 25% of its dark value and was replaced by photophosphorylation. The additional energy from light allows the aerobic anoxygenic phototrophs to accumulate the supplied organic carbon which would otherwise be respired. The higher efficiency of organic carbon utilization may provide an important competitive advantage during growth under carbon-limited conditions.
650    _2
$a aerobióza $7 D000332
650    _2
$a hydrogenuhličitany $x metabolismus $7 D001639
650    _2
$a biomasa $7 D018533
650    _2
$a uhlík $x metabolismus $7 D002244
650    _2
$a koloběh uhlíku $7 D057486
650    _2
$a izotopy uhlíku $x metabolismus $7 D002247
650    _2
$a kultivační média $x chemie $7 D003470
650    _2
$a tma $7 D003624
650    _2
$a transport elektronů $7 D004579
650    _2
$a izotopové značení $7 D007553
650    12
$a světlo $7 D008027
650    12
$a fototrofní procesy $7 D052817
650    _2
$a pyruváty $x metabolismus $7 D011773
650    _2
$a Sphingomonadaceae $x metabolismus $x účinky záření $7 D042301
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Koblížek, Michal $u -
773    0_
$w MED00000487 $t Applied and environmental microbiology $x 1098-5336 $g Roč. 78, č. 20 (2012), s. 7414-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22885759 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20130409095829 $b ABA008
999    __
$a ok $b bmc $g 975744 $s 810827
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 78 $c 20 $d 7414-9 $i 1098-5336 $m Applied and environmental microbiology $n Appl Environ Microbiol $x MED00000487
LZP    __
$a Pubmed-20130404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...