-
Something wrong with this record ?
Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator
J. Kopfová, P. Nábělková, D. Rachinskii, SC. Rouf
Language English Country Germany
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
ProQuest Central
from 1997-11-01 to 1 year ago
Medline Complete (EBSCOhost)
from 2005-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 1997-11-01 to 1 year ago
- MeSH
- Models, Biological MeSH
- Epidemics * MeSH
- Communicable Diseases * epidemiology MeSH
- Humans MeSH
- Vaccination MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.
Mathematical Institute of the Silesian University Na Rybníčku 1 746 01 Opava Czech Republic
University of Texas at Dallas 800 W Campbell Richardson TX 75080 United States
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025402
- 003
- CZ-PrNML
- 005
- 20211026133840.0
- 007
- ta
- 008
- 211013s2021 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00285-021-01629-8 $2 doi
- 035 __
- $a (PubMed)34218344
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Kopfová, Jana $u Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01, Opava, Czech Republic
- 245 10
- $a Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator / $c J. Kopfová, P. Nábělková, D. Rachinskii, SC. Rouf
- 520 9_
- $a We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.
- 650 12
- $a infekční nemoci $x epidemiologie $7 D003141
- 650 12
- $a epidemie $7 D058872
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a vakcinace $7 D014611
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nábělková, Petra $u Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01, Opava, Czech Republic
- 700 1_
- $a Rachinskii, Dmitrii $u University of Texas at Dallas, 800 W Campbell, Richardson, TX, 75080, United States
- 700 1_
- $a Rouf, Samiha C $u University of Texas at Dallas, 800 W Campbell, Richardson, TX, 75080, United States. samiha.rouf@utdallas.edu
- 773 0_
- $w MED00002783 $t Journal of mathematical biology $x 1432-1416 $g Roč. 83, č. 2 (2021), s. 11
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34218344 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133846 $b ABA008
- 999 __
- $a ok $b bmc $g 1714443 $s 1145909
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 83 $c 2 $d 11 $e 20210704 $i 1432-1416 $m Journal of mathematical biology $n J Math Biol $x MED00002783
- LZP __
- $a Pubmed-20211013