Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator

J. Kopfová, P. Nábělková, D. Rachinskii, SC. Rouf

. 2021 ; 83 (2) : 11. [pub] 20210704

Language English Country Germany

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 1997-11-01 to 1 year ago
Medline Complete (EBSCOhost) from 2005-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-11-01 to 1 year ago

We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025402
003      
CZ-PrNML
005      
20211026133840.0
007      
ta
008      
211013s2021 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00285-021-01629-8 $2 doi
035    __
$a (PubMed)34218344
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Kopfová, Jana $u Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01, Opava, Czech Republic
245    10
$a Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator / $c J. Kopfová, P. Nábělková, D. Rachinskii, SC. Rouf
520    9_
$a We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.
650    12
$a infekční nemoci $x epidemiologie $7 D003141
650    12
$a epidemie $7 D058872
650    _2
$a lidé $7 D006801
650    _2
$a biologické modely $7 D008954
650    _2
$a vakcinace $7 D014611
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nábělková, Petra $u Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01, Opava, Czech Republic
700    1_
$a Rachinskii, Dmitrii $u University of Texas at Dallas, 800 W Campbell, Richardson, TX, 75080, United States
700    1_
$a Rouf, Samiha C $u University of Texas at Dallas, 800 W Campbell, Richardson, TX, 75080, United States. samiha.rouf@utdallas.edu
773    0_
$w MED00002783 $t Journal of mathematical biology $x 1432-1416 $g Roč. 83, č. 2 (2021), s. 11
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34218344 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133846 $b ABA008
999    __
$a ok $b bmc $g 1714443 $s 1145909
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 83 $c 2 $d 11 $e 20210704 $i 1432-1416 $m Journal of mathematical biology $n J Math Biol $x MED00002783
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...