• This record comes from PubMed

Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator

. 2021 Jul 04 ; 83 (2) : 11. [epub] 20210704

Language English Country Germany Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34218344
PubMed Central PMC8255057
DOI 10.1007/s00285-021-01629-8
PII: 10.1007/s00285-021-01629-8
Knihovny.cz E-resources

We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.

See more in PubMed

Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL. Pulse mass measles vaccination across age cohorts. Proc Natl Acad Sci. 1993;90(24):11698–11702. doi: 10.1073/pnas.90.24.11698. PubMed DOI PMC

Al-Bender F, Lampaert V, Swevers J (2004) Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back. Chaos: An Interdisciplinary. J Nonlinear Sci 14(2):446–460 PubMed

Appelbe B, Rachinskii D, Zhezherun A. Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Phys B Condens Matter. 2008;403(2–3):301–304. doi: 10.1016/j.physb.2007.08.034. DOI

Appelbe B, Flynn D, McNamara H, O’Kane P, Pimenov A, Pokrovskii A, Rachinskii D, Zhezherun A. Rate-independent hysteresis in terrestrial hydrology. IEEE Control Sys Mag. 2009;29(1):44–69. doi: 10.1109/MCS.2008.930923. DOI

Balanov Z, Krawcewicz W, Rachinskii D, Zhezherun A. Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis. J Dyn Differ Equ. 2012;24(4):713–759. doi: 10.1007/s10884-012-9271-4. DOI

Bernardo M, Budd CJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost GO, Piiroinen PT. Bifurcations in nonsmooth dynamical systems. SIAM Rev. 2008;50(4):629–701. doi: 10.1137/050625060. DOI

Chauhan S, Misra OP, Dhar J. Stability analysis of SIR model with vaccination. Am J Comput Appl Math. 2014;4(1):17–23. doi: 10.1016/j.amc.2013.11.094. DOI

Chen X, Fu F. Imperfect vaccine and hysteresis. Proc Biol Sci. 2019;286(1894):20182406. PubMed PMC

Chladná Z, Kopfová J, Rachinskii D, Rouf S. Global dynamics of SIR model with switched transmission rate. J Math Biol. 2020;80:1209–1233. doi: 10.1007/s00285-019-01460-2. PubMed DOI

Cirrincione M, Miceli R, Galluzzo GR, Trapanese M. Preisach function identification by neural networks. IEEE Trans Magn. 2002;38(5):2421–2423. doi: 10.1109/TMAG.2002.803614. DOI

Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, CMMID COVID-19 Working Group The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. Lancet Public Health. 2020;5(7):E375–E385. doi: 10.1016/S2468-2667(20)30133-X. PubMed DOI PMC

Dubey B, Dubey P, Dubey US. Dynamics of an SIR model with nonlinear incidence and treatment rate. Appl Appl Math. 2015;10(2):718–737.

Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc R Soc Lond B Biol Sci. 2006;273(1600):2541–2550. PubMed PMC

Guidry JPD, Laestadius LI, Vraga EK, Miller CA, Perrin PB, Burton CW, Ryan M, Fuemmeler BF, Carlyle KE. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am J Infect Control. 2021;49(2):137–142. doi: 10.1016/j.ajic.2020.11.018. PubMed DOI PMC

Hoffmann KH, Meyer GH. A least squares method for finding the Preisach hysteresisoperator from measurements. Numer Math. 1989;55(6):695–710. doi: 10.1007/BF01389337. DOI

Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, Guo Y, Zhang S, Jia Q, Zhao C, Zhang J. The effectiveness of the quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID19): well mixed SEIR model analysis. J Med Virol. 2020;92(7):841–848. doi: 10.1002/jmv.25827. PubMed DOI

Javid B, Balaban NQ. Impact of Population mask wearing on COVID-19 post lockdown. Infect Microbes Dis. 2020;2(3):115–117. doi: 10.1097/IM9.0000000000000029. DOI

Kaddar A. Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal Model Control. 2010;15(3):299–306. doi: 10.15388/NA.15.3.14325. DOI

Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics, I. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 115(772):700–721

Kermack WO, McKendrick AG (1932) Contributions to the mathematical theory of epidemics, II - the problem of endemicity. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 138(834):55–83

Kermack WO, McKendrick AG (1933) Contributions to the mathematical theory of epidemics, III - further studies of the problem of endemicity. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 141(843):94–122

Korobeinikov A, Wake GC. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett. 2002;15(8):955–960. doi: 10.1016/S0893-9659(02)00069-1. DOI

Korobeinikov A, Maini PK. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng. 2004;1(1):57–60. doi: 10.3934/mbe.2004.1.57. PubMed DOI

Krasnosel’skii MA, Pokrovskii AV. Systems with Hysteresis. Berlin, Heidelberg: Springer; 1989. Static Hysteron; pp. 1–58.

Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, Kimball S, El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021;27(2):225–228. doi: 10.1038/s41591-020-1124-9. PubMed DOI PMC

Leonov G, Shumafov M, Teshev V, Aleksandrov K. Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations. Differ Equ. 2017;53(13):1764–1816. doi: 10.1134/S0012266117130055. DOI

Liu X, Stechlinski P. Infectious disease models with time-varying parameters and general nonlinear incidence rate. Appl Math Model. 2012;36(5):1974–1994. doi: 10.1016/j.apm.2011.08.019. DOI

Lu Z, Chi X, Chen L. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math Comput Model. 2002;36(9–10):1039–1057. doi: 10.1016/S0895-7177(02)00257-1. DOI

Marquioni VM, de Aguiar M. Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks. Chaos Solitons Fractals. 2020;138:109999. doi: 10.1016/j.chaos.2020.109999. PubMed DOI PMC

Mayergoyz ID. Mathematical models of hysteresis and their applications. New York, NY: Academic Press; 2003.

Meza MEM, Bhaya A. Realistic threshold policy with hysteresis to control predator-prey continuous dynamics. Theory Biosci. 2009;128:139–149. doi: 10.1007/s12064-009-0062-3. PubMed DOI

Pimenov A, Kelly TC, Korobeinikov A, O’Callaghan MJ, Pokrovskii AV. Systems with hysteresis in mathematical biology via a canonical example. New York: Nova Science Publishers Inc, Clustering Algorithms and Mathematical Modeling; 2010. p. 34.

Pimenov A, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii A, Rachinskii D. Memory effects in population dynamics: spread of infectious disease as a case study. Math Model Natl Phenom. 2012;7:1–30. doi: 10.1051/mmnp/20127313. DOI

Rachinskii D, Ruderman M. Convergence of direct recursive algorithm for identification of Preisach hysteresis model with stochastic input. SIAM J Appl Math. 2016;76(4):1270–1295. doi: 10.1137/140986633. DOI

Ruderman M, Bertram T. Modified Maxwell-slip model of presliding friction. IFAC Proceedings. 2011;44(1):10764–10769.

Sims C, Finnoff D, O’Regan SM. Public control of rational and unpredictable epidemics. J Econ Behav Organ. 2016;132:161–176. doi: 10.1016/j.jebo.2016.04.005. DOI

Su Z, Wang W, Li L, Xiao J, Stanley HE. Emergence of hysteresis loop in social contagions on complex networks. Sci Rep. 2017;7:6103. doi: 10.1038/s41598-017-06286-w. PubMed DOI PMC

Ullah R, Zaman G, Islam S. Stability analysis of a general SIR epidemic model. VFAST Trans Math. 2013;1(1):57–61.

Visintin A. Differential Models of Hysteresis. Berlin, Heidelberg: Springer; 1994. Hysteresis and semigroups; pp. 211–256.

Volpert V, Banerjee M, Petrovskii S. On a quarantine model of coronavirus infection and data analysis. Math Model Natl Phenom. 2020;15:24. doi: 10.1051/mmnp/2020006. DOI

Wang A, Xiao Y, Cheke RA. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete Contin Dyn Syst Ser B (DCDS-B) 2014;19(9):2915–2940.

Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005;2(7):e174. doi: 10.1371/journal.pmed.0020174. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...