Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator
Language English Country Germany Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34218344
PubMed Central
PMC8255057
DOI
10.1007/s00285-021-01629-8
PII: 10.1007/s00285-021-01629-8
Knihovny.cz E-resources
- Keywords
- Endemic equilibrium, Lyapunov function, Periodic orbit, Preisach hysteresis operator, SIR model,
- MeSH
- Models, Biological MeSH
- Epidemics * MeSH
- Communicable Diseases * epidemiology MeSH
- Humans MeSH
- Vaccination MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the global stability of the infection-free equilibrium state. If this condition does not hold true, the model has a connected set of endemic equilibrium states characterized by different proportion of infected and immune individuals. In this case, we show that every trajectory converges either to an endemic equilibrium or to a periodic orbit. Under additional natural assumptions, the periodic attractor is excluded, and we guarantee the convergence of each trajectory to an endemic equilibrium state. The global stability analysis uses a family of Lyapunov functions corresponding to the family of branches of the hysteresis operator.
Mathematical Institute of the Silesian University Na Rybníčku 1 746 01 Opava Czech Republic
University of Texas at Dallas 800 W Campbell Richardson TX 75080 United States
See more in PubMed
Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL. Pulse mass measles vaccination across age cohorts. Proc Natl Acad Sci. 1993;90(24):11698–11702. doi: 10.1073/pnas.90.24.11698. PubMed DOI PMC
Al-Bender F, Lampaert V, Swevers J (2004) Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back. Chaos: An Interdisciplinary. J Nonlinear Sci 14(2):446–460 PubMed
Appelbe B, Rachinskii D, Zhezherun A. Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Phys B Condens Matter. 2008;403(2–3):301–304. doi: 10.1016/j.physb.2007.08.034. DOI
Appelbe B, Flynn D, McNamara H, O’Kane P, Pimenov A, Pokrovskii A, Rachinskii D, Zhezherun A. Rate-independent hysteresis in terrestrial hydrology. IEEE Control Sys Mag. 2009;29(1):44–69. doi: 10.1109/MCS.2008.930923. DOI
Balanov Z, Krawcewicz W, Rachinskii D, Zhezherun A. Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis. J Dyn Differ Equ. 2012;24(4):713–759. doi: 10.1007/s10884-012-9271-4. DOI
Bernardo M, Budd CJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost GO, Piiroinen PT. Bifurcations in nonsmooth dynamical systems. SIAM Rev. 2008;50(4):629–701. doi: 10.1137/050625060. DOI
Chauhan S, Misra OP, Dhar J. Stability analysis of SIR model with vaccination. Am J Comput Appl Math. 2014;4(1):17–23. doi: 10.1016/j.amc.2013.11.094. DOI
Chen X, Fu F. Imperfect vaccine and hysteresis. Proc Biol Sci. 2019;286(1894):20182406. PubMed PMC
Chladná Z, Kopfová J, Rachinskii D, Rouf S. Global dynamics of SIR model with switched transmission rate. J Math Biol. 2020;80:1209–1233. doi: 10.1007/s00285-019-01460-2. PubMed DOI
Cirrincione M, Miceli R, Galluzzo GR, Trapanese M. Preisach function identification by neural networks. IEEE Trans Magn. 2002;38(5):2421–2423. doi: 10.1109/TMAG.2002.803614. DOI
Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, CMMID COVID-19 Working Group The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. Lancet Public Health. 2020;5(7):E375–E385. doi: 10.1016/S2468-2667(20)30133-X. PubMed DOI PMC
Dubey B, Dubey P, Dubey US. Dynamics of an SIR model with nonlinear incidence and treatment rate. Appl Appl Math. 2015;10(2):718–737.
Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc R Soc Lond B Biol Sci. 2006;273(1600):2541–2550. PubMed PMC
Guidry JPD, Laestadius LI, Vraga EK, Miller CA, Perrin PB, Burton CW, Ryan M, Fuemmeler BF, Carlyle KE. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am J Infect Control. 2021;49(2):137–142. doi: 10.1016/j.ajic.2020.11.018. PubMed DOI PMC
Hoffmann KH, Meyer GH. A least squares method for finding the Preisach hysteresisoperator from measurements. Numer Math. 1989;55(6):695–710. doi: 10.1007/BF01389337. DOI
Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, Guo Y, Zhang S, Jia Q, Zhao C, Zhang J. The effectiveness of the quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID19): well mixed SEIR model analysis. J Med Virol. 2020;92(7):841–848. doi: 10.1002/jmv.25827. PubMed DOI
Javid B, Balaban NQ. Impact of Population mask wearing on COVID-19 post lockdown. Infect Microbes Dis. 2020;2(3):115–117. doi: 10.1097/IM9.0000000000000029. DOI
Kaddar A. Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal Model Control. 2010;15(3):299–306. doi: 10.15388/NA.15.3.14325. DOI
Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics, I. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 115(772):700–721
Kermack WO, McKendrick AG (1932) Contributions to the mathematical theory of epidemics, II - the problem of endemicity. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 138(834):55–83
Kermack WO, McKendrick AG (1933) Contributions to the mathematical theory of epidemics, III - further studies of the problem of endemicity. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 141(843):94–122
Korobeinikov A, Wake GC. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett. 2002;15(8):955–960. doi: 10.1016/S0893-9659(02)00069-1. DOI
Korobeinikov A, Maini PK. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng. 2004;1(1):57–60. doi: 10.3934/mbe.2004.1.57. PubMed DOI
Krasnosel’skii MA, Pokrovskii AV. Systems with Hysteresis. Berlin, Heidelberg: Springer; 1989. Static Hysteron; pp. 1–58.
Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, Kimball S, El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021;27(2):225–228. doi: 10.1038/s41591-020-1124-9. PubMed DOI PMC
Leonov G, Shumafov M, Teshev V, Aleksandrov K. Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations. Differ Equ. 2017;53(13):1764–1816. doi: 10.1134/S0012266117130055. DOI
Liu X, Stechlinski P. Infectious disease models with time-varying parameters and general nonlinear incidence rate. Appl Math Model. 2012;36(5):1974–1994. doi: 10.1016/j.apm.2011.08.019. DOI
Lu Z, Chi X, Chen L. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math Comput Model. 2002;36(9–10):1039–1057. doi: 10.1016/S0895-7177(02)00257-1. DOI
Marquioni VM, de Aguiar M. Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks. Chaos Solitons Fractals. 2020;138:109999. doi: 10.1016/j.chaos.2020.109999. PubMed DOI PMC
Mayergoyz ID. Mathematical models of hysteresis and their applications. New York, NY: Academic Press; 2003.
Meza MEM, Bhaya A. Realistic threshold policy with hysteresis to control predator-prey continuous dynamics. Theory Biosci. 2009;128:139–149. doi: 10.1007/s12064-009-0062-3. PubMed DOI
Pimenov A, Kelly TC, Korobeinikov A, O’Callaghan MJ, Pokrovskii AV. Systems with hysteresis in mathematical biology via a canonical example. New York: Nova Science Publishers Inc, Clustering Algorithms and Mathematical Modeling; 2010. p. 34.
Pimenov A, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii A, Rachinskii D. Memory effects in population dynamics: spread of infectious disease as a case study. Math Model Natl Phenom. 2012;7:1–30. doi: 10.1051/mmnp/20127313. DOI
Rachinskii D, Ruderman M. Convergence of direct recursive algorithm for identification of Preisach hysteresis model with stochastic input. SIAM J Appl Math. 2016;76(4):1270–1295. doi: 10.1137/140986633. DOI
Ruderman M, Bertram T. Modified Maxwell-slip model of presliding friction. IFAC Proceedings. 2011;44(1):10764–10769.
Sims C, Finnoff D, O’Regan SM. Public control of rational and unpredictable epidemics. J Econ Behav Organ. 2016;132:161–176. doi: 10.1016/j.jebo.2016.04.005. DOI
Su Z, Wang W, Li L, Xiao J, Stanley HE. Emergence of hysteresis loop in social contagions on complex networks. Sci Rep. 2017;7:6103. doi: 10.1038/s41598-017-06286-w. PubMed DOI PMC
Ullah R, Zaman G, Islam S. Stability analysis of a general SIR epidemic model. VFAST Trans Math. 2013;1(1):57–61.
Visintin A. Differential Models of Hysteresis. Berlin, Heidelberg: Springer; 1994. Hysteresis and semigroups; pp. 211–256.
Volpert V, Banerjee M, Petrovskii S. On a quarantine model of coronavirus infection and data analysis. Math Model Natl Phenom. 2020;15:24. doi: 10.1051/mmnp/2020006. DOI
Wang A, Xiao Y, Cheke RA. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete Contin Dyn Syst Ser B (DCDS-B) 2014;19(9):2915–2940.
Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005;2(7):e174. doi: 10.1371/journal.pmed.0020174. PubMed DOI PMC