-
Something wrong with this record ?
The CTD code of RNA polymerase II: a structural view
O. Jasnovidova, R. Stefl,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
23042580
DOI
10.1002/wrna.1138
Knihovny.cz E-resources
- MeSH
- Transcription, Genetic MeSH
- Methyltransferases metabolism MeSH
- Peptidylprolyl Isomerase metabolism MeSH
- Protein Processing, Post-Translational * MeSH
- Proline metabolism MeSH
- RNA-Binding Proteins genetics metabolism MeSH
- RNA Polymerase II * chemistry genetics metabolism MeSH
- Saccharomyces cerevisiae enzymology genetics MeSH
- Amino Acid Sequence MeSH
- Protein Structure, Tertiary MeSH
- Carrier Proteins metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
RNA polymerase II (RNA pol II) is not only the fundamental enzyme for gene expression but also the central coordinator of co-transcriptional processing. RNA pol II associates with a large number of enzymes and protein/RNA-binding factors through its C-terminal domain (CTD) that consists of tandem repeats of the heptapeptide consensus Y(1)S(2)P(3) T(4)S(5)P(6)S(7). The CTD is posttranslationally modified, yielding specific patterns (often called the CTD code) that are recognized by appropriate factors in coordination with the transcription cycle. Serine phosphorylations are currently the best characterized elements of the CTD code; however, the roles of the proline isomerization and other modifications of the CTD remain poorly understood. The dynamic remodeling of the CTD modifications by kinases, phosphatases, isomerases, and other enzymes introduce changes in the CTD structure and dynamics. These changes serve as structural switches that spatially and temporally regulate the binding of processing factors. Recent structural studies of the CTD bound to various proteins have revealed the basic rules that govern the recognition of these switches and shed light on the roles of these protein factors in the assemblies of the processing machineries.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024273
- 003
- CZ-PrNML
- 005
- 20130723100129.0
- 007
- ta
- 008
- 130703s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/wrna.1138 $2 doi
- 035 __
- $a (PubMed)23042580
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jasnovidova, Olga $u CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 245 14
- $a The CTD code of RNA polymerase II: a structural view / $c O. Jasnovidova, R. Stefl,
- 520 9_
- $a RNA polymerase II (RNA pol II) is not only the fundamental enzyme for gene expression but also the central coordinator of co-transcriptional processing. RNA pol II associates with a large number of enzymes and protein/RNA-binding factors through its C-terminal domain (CTD) that consists of tandem repeats of the heptapeptide consensus Y(1)S(2)P(3) T(4)S(5)P(6)S(7). The CTD is posttranslationally modified, yielding specific patterns (often called the CTD code) that are recognized by appropriate factors in coordination with the transcription cycle. Serine phosphorylations are currently the best characterized elements of the CTD code; however, the roles of the proline isomerization and other modifications of the CTD remain poorly understood. The dynamic remodeling of the CTD modifications by kinases, phosphatases, isomerases, and other enzymes introduce changes in the CTD structure and dynamics. These changes serve as structural switches that spatially and temporally regulate the binding of processing factors. Recent structural studies of the CTD bound to various proteins have revealed the basic rules that govern the recognition of these switches and shed light on the roles of these protein factors in the assemblies of the processing machineries.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a transportní proteiny $x metabolismus $7 D002352
- 650 _2
- $a methyltransferasy $x metabolismus $7 D008780
- 650 _2
- $a peptidylprolylisomerasa $x metabolismus $7 D019696
- 650 _2
- $a prolin $x metabolismus $7 D011392
- 650 12
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 12
- $a RNA-polymerasa II $x chemie $x genetika $x metabolismus $7 D012319
- 650 _2
- $a proteiny vázající RNA $x genetika $x metabolismus $7 D016601
- 650 _2
- $a Saccharomyces cerevisiae $x enzymologie $x genetika $7 D012441
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Stefl, Richard $u -
- 773 0_
- $w MED00181748 $t Wiley interdisciplinary reviews. RNA $x 1757-7012 $g Roč. 4, č. 1 (2012), s. 1-16
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23042580 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130723100617 $b ABA008
- 999 __
- $a ok $b bmc $g 987953 $s 822653
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 4 $c 1 $d 1-16 $i 1757-7012 $m Wiley interdisciplinary reviews. RNA $n Wiley Interdiscip Rev RNA $x MED00181748
- LZP __
- $a Pubmed-20130703