-
Something wrong with this record ?
Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis
F. Husnik, N. Nikoh, R. Koga, L. Ross, RP. Duncan, M. Fujie, M. Tanaka, N. Satoh, D. Bachtrog, AC. Wilson, CD. von Dohlen, T. Fukatsu, JP. McCutcheon,
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Cell Press Free Archives
from 1995-01-01 to 1 year ago
Free Medical Journals
from 1995 to 1 year ago
Open Access Digital Library
from 1995-01-01
- MeSH
- Amino Acids biosynthesis MeSH
- Bacteria classification genetics MeSH
- Betaproteobacteria genetics MeSH
- Phylogeny MeSH
- Hemiptera genetics microbiology physiology MeSH
- Molecular Sequence Data MeSH
- Gene Transfer, Horizontal * MeSH
- Gene Expression Profiling MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The smallest reported bacterial genome belongs to Tremblaya princeps, a symbiont of Planococcus citri mealybugs (PCIT). Tremblaya PCIT not only has a 139 kb genome, but possesses its own bacterial endosymbiont, Moranella endobia. Genome and transcriptome sequencing, including genome sequencing from a Tremblaya lineage lacking intracellular bacteria, reveals that the extreme genomic degeneracy of Tremblaya PCIT likely resulted from acquiring Moranella as an endosymbiont. In addition, at least 22 expressed horizontally transferred genes from multiple diverse bacteria to the mealybug genome likely complement missing symbiont genes. However, none of these horizontally transferred genes are from Tremblaya, showing that genome reduction in this symbiont has not been enabled by gene transfer to the host nucleus. Our results thus indicate that the functioning of this three-way symbiosis is dependent on genes from at least six lineages of organisms and reveal a path to intimate endosymbiosis distinct from that followed by organelles.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13031445
- 003
- CZ-PrNML
- 005
- 20131003105721.0
- 007
- ta
- 008
- 131002s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cell.2013.05.040 $2 doi
- 035 __
- $a (PubMed)23791183
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Husnik, Filip $u Faculty of Science, University of South Bohemia and Institute of Parasitology, Biology Centre ASCR, České Budějovice 370 05, Czech Republic.
- 245 10
- $a Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis / $c F. Husnik, N. Nikoh, R. Koga, L. Ross, RP. Duncan, M. Fujie, M. Tanaka, N. Satoh, D. Bachtrog, AC. Wilson, CD. von Dohlen, T. Fukatsu, JP. McCutcheon,
- 520 9_
- $a The smallest reported bacterial genome belongs to Tremblaya princeps, a symbiont of Planococcus citri mealybugs (PCIT). Tremblaya PCIT not only has a 139 kb genome, but possesses its own bacterial endosymbiont, Moranella endobia. Genome and transcriptome sequencing, including genome sequencing from a Tremblaya lineage lacking intracellular bacteria, reveals that the extreme genomic degeneracy of Tremblaya PCIT likely resulted from acquiring Moranella as an endosymbiont. In addition, at least 22 expressed horizontally transferred genes from multiple diverse bacteria to the mealybug genome likely complement missing symbiont genes. However, none of these horizontally transferred genes are from Tremblaya, showing that genome reduction in this symbiont has not been enabled by gene transfer to the host nucleus. Our results thus indicate that the functioning of this three-way symbiosis is dependent on genes from at least six lineages of organisms and reveal a path to intimate endosymbiosis distinct from that followed by organelles.
- 650 _2
- $a aminokyseliny $x biosyntéza $7 D000596
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Bacteria $x klasifikace $x genetika $7 D001419
- 650 _2
- $a Betaproteobacteria $x genetika $7 D020562
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 12
- $a přenos genů horizontální $7 D022761
- 650 _2
- $a Hemiptera $x genetika $x mikrobiologie $x fyziologie $7 D006430
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a fylogeneze $7 D010802
- 650 12
- $a symbióza $7 D013559
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Nikoh, Naruo $u -
- 700 1_
- $a Koga, Ryuichi $u -
- 700 1_
- $a Ross, Laura $u -
- 700 1_
- $a Duncan, Rebecca P $u -
- 700 1_
- $a Fujie, Manabu $u -
- 700 1_
- $a Tanaka, Makiko $u -
- 700 1_
- $a Satoh, Nori $u -
- 700 1_
- $a Bachtrog, Doris $u -
- 700 1_
- $a Wilson, Alex C C $u -
- 700 1_
- $a von Dohlen, Carol D $u -
- 700 1_
- $a Fukatsu, Takema $u -
- 700 1_
- $a McCutcheon, John P $u -
- 773 0_
- $w MED00009444 $t Cell $x 1097-4172 $g Roč. 153, č. 7 (2013), s. 1567-78
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23791183 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20131002 $b ABA008
- 991 __
- $a 20131003110239 $b ABA008
- 999 __
- $a ok $b bmc $g 995532 $s 829890
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 153 $c 7 $d 1567-78 $i 1097-4172 $m Cell $n Cell $x MED00009444
- LZP __
- $a Pubmed-20131002