-
Something wrong with this record ?
Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions
F. Shamekhi, M. Shuhaimi, A. Ariff, YA. Manap
Language English Country Czech Republic
Document type Journal Article
- MeSH
- Bifidobacterium physiology radiation effects MeSH
- Time Factors MeSH
- Gastrointestinal Tract microbiology MeSH
- Infant MeSH
- Humans MeSH
- Freeze Drying * MeSH
- Microbial Viability radiation effects MeSH
- Infant Formula MeSH
- Colony Count, Microbial MeSH
- Drug Compounding MeSH
- Probiotics radiation effects MeSH
- Drug Storage methods MeSH
- Temperature MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13033253
- 003
- CZ-PrNML
- 005
- 20131112094402.0
- 007
- ta
- 008
- 131014s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-012-0183-9 $2 doi
- 035 __
- $a (PubMed)22843029
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Shamekhi, Fatemeh $u Department of Microbiology, University Putra Malaysia, Selangor, Malaysia
- 245 10
- $a Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions / $c F. Shamekhi, M. Shuhaimi, A. Ariff, YA. Manap
- 520 9_
- $a The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.
- 650 _2
- $a Bifidobacterium $x fyziologie $x účinky záření $7 D001644
- 650 _2
- $a počet mikrobiálních kolonií $7 D015169
- 650 _2
- $a příprava léků $7 D004339
- 650 _2
- $a skladování léků $x metody $7 D004356
- 650 12
- $a lyofilizace $7 D005612
- 650 _2
- $a gastrointestinální trakt $x mikrobiologie $7 D041981
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kojenec $7 D007223
- 650 _2
- $a náhražky mateřského mléka $7 D041943
- 650 _2
- $a mikrobiální viabilita $x účinky záření $7 D050296
- 650 _2
- $a probiotika $x účinky záření $7 D019936
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Shuhaimi, Mustafa $u -
- 700 1_
- $a Ariff, Arbakariya $u - $7 gn_A_00008452
- 700 1_
- $a Manap, Yazid A $u -
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 58, č. 2 (2013), s. 91-101
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22843029 $y Pubmed
- 910 __
- $a ABA008 $b online $c sign $y 4 $z 0
- 990 __
- $a 20131014 $b ABA008
- 991 __
- $a 20131112093859 $b ABA008
- 999 __
- $a ok $b bmc $g 1000257 $s 831706
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 58 $c 2 $d 91-101 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $b NLK138 $a Pubmed-20131014