-
Something wrong with this record ?
Tissue-specific peroxisome proliferator activated receptor gamma expression and metabolic effects of telmisartan
V. Zídek, P. Mlejnek, M. Simáková, J. Silhavy, V. Landa, L. Kazdová, M. Pravenec, TW. Kurtz,
Language English Country United States
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
NLK
ProQuest Central
from 2000-01-01 to 2015-12-31
Health & Medicine (ProQuest)
from 2000-01-01 to 2015-12-31
PubMed
23426788
DOI
10.1093/ajh/hpt019
Knihovny.cz E-resources
- MeSH
- Benzimidazoles pharmacokinetics MeSH
- Benzoates pharmacokinetics MeSH
- Angiotensin II Type 1 Receptor Blockers pharmacokinetics MeSH
- Hypertension drug therapy metabolism MeSH
- Insulin Resistance MeSH
- Blood Glucose metabolism MeSH
- Disease Models, Animal MeSH
- Mice, Knockout MeSH
- Mice MeSH
- PPAR gamma biosynthesis MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
BACKGROUND: The angiotensin receptor blocker telmisartan has unique chemical properties that enable it to partially activate the peroxisome proliferator activated receptor gamma (PPARG) as well as block angiotensin II type 1 receptors. METHODS: To directly test whether some of the metabolic effects of telmisartan require the presence of PPARG, we studied mice in which the gene (Pparg) for PPARG had been deleted in fat or in muscle. RESULTS: We found that knockout of Pparg in fat tissue greatly impaired the ability of telmisartan to increase adiponectin levels and to enhance sensitivity to insulin-stimulated glucose incorporation into adipose tissue lipids. In contrast, muscle-specific Pparg knockout had relatively little or no impact on the ability of telmisartan to increase adiponectin levels or affect glucose metabolism either in fat or muscle. These findings provide compelling evidence that the ability of telmisartan to increase adiponectin levels and stimulate glucose use in adipose tissue may depend on the presence of PPARG in fat. CONCLUSIONS: We conclude that PPARG in adipose tissue is required for at least several of the metabolic actions of telmisartan.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040923
- 003
- CZ-PrNML
- 005
- 20250618152439.0
- 007
- ta
- 008
- 140107s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/ajh/hpt019 $2 doi
- 035 __
- $a (PubMed)23426788
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zídek, Václav
- 245 10
- $a Tissue-specific peroxisome proliferator activated receptor gamma expression and metabolic effects of telmisartan / $c V. Zídek, P. Mlejnek, M. Simáková, J. Silhavy, V. Landa, L. Kazdová, M. Pravenec, TW. Kurtz,
- 520 9_
- $a BACKGROUND: The angiotensin receptor blocker telmisartan has unique chemical properties that enable it to partially activate the peroxisome proliferator activated receptor gamma (PPARG) as well as block angiotensin II type 1 receptors. METHODS: To directly test whether some of the metabolic effects of telmisartan require the presence of PPARG, we studied mice in which the gene (Pparg) for PPARG had been deleted in fat or in muscle. RESULTS: We found that knockout of Pparg in fat tissue greatly impaired the ability of telmisartan to increase adiponectin levels and to enhance sensitivity to insulin-stimulated glucose incorporation into adipose tissue lipids. In contrast, muscle-specific Pparg knockout had relatively little or no impact on the ability of telmisartan to increase adiponectin levels or affect glucose metabolism either in fat or muscle. These findings provide compelling evidence that the ability of telmisartan to increase adiponectin levels and stimulate glucose use in adipose tissue may depend on the presence of PPARG in fat. CONCLUSIONS: We conclude that PPARG in adipose tissue is required for at least several of the metabolic actions of telmisartan.
- 650 _2
- $a blokátory receptorů AT1 pro angiotensin II $x farmakokinetika $7 D047228
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a benzimidazoly $x farmakokinetika $7 D001562
- 650 _2
- $a benzoáty $x farmakokinetika $7 D001565
- 650 _2
- $a krevní glukóza $x metabolismus $7 D001786
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 _2
- $a hypertenze $x farmakoterapie $x metabolismus $7 D006973
- 650 _2
- $a inzulinová rezistence $7 D007333
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a PPAR gama $x biosyntéza $7 D047495
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mlejnek, Petr
- 700 1_
- $a Simáková, Miroslava
- 700 1_
- $a Silhavy, Jan
- 700 1_
- $a Landa, Vladimír
- 700 1_
- $a Kazdová, Ludmila, $d 1938-2025 $7 xx0053119
- 700 1_
- $a Pravenec, Michal
- 700 1_
- $a Kurtz, Theodore W
- 773 0_
- $w MED00000255 $t American journal of hypertension $x 1941-7225 $g Roč. 26, č. 6 (2013), s. 829-35
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23426788 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140107 $b ABA008
- 991 __
- $a 20250618152429 $b ABA008
- 999 __
- $a ok $b bmc $g 1005319 $s 839435
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 26 $c 6 $d 829-35 $i 1941-7225 $m American journal of hypertension $n Am J Hypertens $x MED00000255
- LZP __
- $a Pubmed-20140107