• Je něco špatně v tomto záznamu ?

A piecewise monotone subgradient algorithm for accurate L¹-TV based registration of physical slices with discontinuities in microscopy

J. Michalek, M. Capek,

. 2013 ; 32 (5) : 901-18.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc14040937

Image registration tasks are often formulated in terms of minimization of a functional consisting of a data fidelity term penalizing the mismatch between the reference and the target image, and a term enforcing smoothness of shift between neighboring pairs of pixels (a min-sum problem). Most methods for deformable image registration use some form of interpolation between matching control points. The interpolation makes it impossible to account for isolated discontinuities in the deformation field that may appear, e.g., when a physical slice of a microscopy specimen is ruptured by the cutting tool. For registration of neighboring physical slices of microscopy specimens with discontinuities, Janácek proposed an L¹-distance data fidelity term and a total variation (TV) smoothness term, and used a graph-cut (GC) based iterative steepest descent algorithm for minimization. The L¹-TV functional is nonconvex; hence a steepest descent algorithm is not guaranteed to converge to the global minimum. Schlesinger presented transformation of max-sum problems to minimization of a dual quantity called problem power, which is--contrary to the original max-sum functional--convex. Based on Schlesinger's solution to max-sum problems we developed an algorithm for L¹-TV minimization by iterative multi-label steepest descent minimization of the convex dual problem. For Schlesinger's subgradient algorithm we proposed a novel step control heuristics that considerably enhances both speed and accuracy compared with standard step size strategies for subgradient methods. It is shown experimentally that our subgradient scheme achieves consistently better image registration than GC in terms of lower values both of the composite L¹-TV functional, and of its components, i.e., the L¹ distance of the images and the transformation smoothness TV, and yields visually acceptable results even in cases where the GC based algorithm fails. The new algorithm allows easy parallelization and can thus be sped up by running on multi-core graphic processing units.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14040937
003      
CZ-PrNML
005      
20140113121023.0
007      
ta
008      
140107s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1109/TMI.2013.2242896 $2 doi
035    __
$a (PubMed)23362248
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Michalek, Jan
245    12
$a A piecewise monotone subgradient algorithm for accurate L¹-TV based registration of physical slices with discontinuities in microscopy / $c J. Michalek, M. Capek,
520    9_
$a Image registration tasks are often formulated in terms of minimization of a functional consisting of a data fidelity term penalizing the mismatch between the reference and the target image, and a term enforcing smoothness of shift between neighboring pairs of pixels (a min-sum problem). Most methods for deformable image registration use some form of interpolation between matching control points. The interpolation makes it impossible to account for isolated discontinuities in the deformation field that may appear, e.g., when a physical slice of a microscopy specimen is ruptured by the cutting tool. For registration of neighboring physical slices of microscopy specimens with discontinuities, Janácek proposed an L¹-distance data fidelity term and a total variation (TV) smoothness term, and used a graph-cut (GC) based iterative steepest descent algorithm for minimization. The L¹-TV functional is nonconvex; hence a steepest descent algorithm is not guaranteed to converge to the global minimum. Schlesinger presented transformation of max-sum problems to minimization of a dual quantity called problem power, which is--contrary to the original max-sum functional--convex. Based on Schlesinger's solution to max-sum problems we developed an algorithm for L¹-TV minimization by iterative multi-label steepest descent minimization of the convex dual problem. For Schlesinger's subgradient algorithm we proposed a novel step control heuristics that considerably enhances both speed and accuracy compared with standard step size strategies for subgradient methods. It is shown experimentally that our subgradient scheme achieves consistently better image registration than GC in terms of lower values both of the composite L¹-TV functional, and of its components, i.e., the L¹ distance of the images and the transformation smoothness TV, and yields visually acceptable results even in cases where the GC based algorithm fails. The new algorithm allows easy parallelization and can thus be sped up by running on multi-core graphic processing units.
650    12
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a hlava $x anatomie a histologie $7 D006257
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a mikroskopie $x metody $7 D008853
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Capek, Martin $u -
773    0_
$w MED00002174 $t IEEE transactions on medical imaging $x 1558-254X $g Roč. 32, č. 5 (2013), s. 901-18
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23362248 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140107 $b ABA008
991    __
$a 20140113121726 $b ABA008
999    __
$a ok $b bmc $g 1005333 $s 839449
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 32 $c 5 $d 901-18 $i 1558-254X $m IEEE transactions on medical imaging $n IEEE Trans Med Imaging $x MED00002174
LZP    __
$a Pubmed-20140107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...