-
Je něco špatně v tomto záznamu ?
Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes
X. Liu, J. Li, Y. Wang, T. Li, J. Zhao, C. Zhang
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antibakteriální látky farmakologie MeSH
- antioxidancia farmakologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- čaj chemie MeSH
- katechin analogy a deriváty farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku analýza metabolismus MeSH
- polyfenoly analýza farmakologie MeSH
- Pseudomonas aeruginosa účinky léků růst a vývoj MeSH
- reaktivní formy kyslíku analýza farmakologie MeSH
- restrikční enzymy genetika metabolismus MeSH
- rostlinné extrakty analýza farmakologie MeSH
- serinové endopeptidasy genetika metabolismus MeSH
- upregulace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Green tea polyphenols (GTP) are widely believed to function as antioxidants and antimicrobial agents. Here we observed that GTP and epigallocatechin gallate, the most abundant catechin in GTP, could also function as prooxidants and produce hydrogen peroxide (H2O2) to inhibit the growth of Pseudomonas aeruginosa. pH value of the medium was the key factor that affected prooxidant versus antioxidant property of GTP. Under weakly acidic conditions (pH 5.5-6.5), GTP showed antioxidant activity by eliminating H2O2; whereas, under neutral and weakly alkaline conditions (pH 7.0-8.0), GTP showed prooxidant activity and inhibited the growth of P. aeruginosa. Furthermore, we studied the effects of GTP on gene expression profiles of a few oxidative stress-related genes by quantitative real-time PCR analysis. After 10 min to 1 h of exposure under weakly alkaline condition, GTP significantly up-regulated expression levels of katB, sodM, ohr, lexA, and recN gene. These findings highlight that the pH-dependent H2O2 production by GTP contributes to the antibacterial activity and can induce oxidative stress-related responses in P. aeruginosa.
College of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang China
Faculty of Basic Medicine Zhejiang Medical College Hangzhou Zhejiang China
Food Safety Key Lab of Liaoning province Bohai University Jinzhou Liaoning China
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14046057
- 003
- CZ-PrNML
- 005
- 20140415095542.0
- 007
- ta
- 008
- 140212s2013 xr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-012-0198-2 $2 doi
- 035 __
- $a (PubMed)23054687
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Liu, Xiaoxiang $u Faculty of Basic Medicine, Zhejiang Medical College, Hangzhou, Zhejiang, China; College of Food Science and Biotechnology, Zhejiang, Gongshang University, Hangzhou, Zhejiang, China
- 245 10
- $a Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes / $c X. Liu, J. Li, Y. Wang, T. Li, J. Zhao, C. Zhang
- 520 9_
- $a Green tea polyphenols (GTP) are widely believed to function as antioxidants and antimicrobial agents. Here we observed that GTP and epigallocatechin gallate, the most abundant catechin in GTP, could also function as prooxidants and produce hydrogen peroxide (H2O2) to inhibit the growth of Pseudomonas aeruginosa. pH value of the medium was the key factor that affected prooxidant versus antioxidant property of GTP. Under weakly acidic conditions (pH 5.5-6.5), GTP showed antioxidant activity by eliminating H2O2; whereas, under neutral and weakly alkaline conditions (pH 7.0-8.0), GTP showed prooxidant activity and inhibited the growth of P. aeruginosa. Furthermore, we studied the effects of GTP on gene expression profiles of a few oxidative stress-related genes by quantitative real-time PCR analysis. After 10 min to 1 h of exposure under weakly alkaline condition, GTP significantly up-regulated expression levels of katB, sodM, ohr, lexA, and recN gene. These findings highlight that the pH-dependent H2O2 production by GTP contributes to the antibacterial activity and can induce oxidative stress-related responses in P. aeruginosa.
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a antioxidancia $x farmakologie $7 D000975
- 650 _2
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 _2
- $a katechin $x analogy a deriváty $x farmakologie $7 D002392
- 650 _2
- $a restrikční enzymy $x genetika $x metabolismus $7 D004262
- 650 _2
- $a peroxid vodíku $x analýza $x metabolismus $7 D006861
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a oxidační stres $x účinky léků $7 D018384
- 650 _2
- $a rostlinné extrakty $x analýza $x farmakologie $7 D010936
- 650 _2
- $a polyfenoly $x analýza $x farmakologie $7 D059808
- 650 _2
- $a Pseudomonas aeruginosa $x účinky léků $x růst a vývoj $7 D011550
- 650 _2
- $a reaktivní formy kyslíku $x analýza $x farmakologie $7 D017382
- 650 _2
- $a kvantitativní polymerázová řetězová reakce $7 D060888
- 650 _2
- $a serinové endopeptidasy $x genetika $x metabolismus $7 D012697
- 650 _2
- $a čaj $x chemie $7 D013662
- 650 _2
- $a upregulace $7 D015854
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Li, Jianrong $u Food Safety Key Lab of Liaoning province, Bohai University, Jinzhou, Liaoning, China
- 700 1_
- $a Wang, Yanbo $u College of Food Science and Biotechnology, Zhejiang, Gongshang University, Hangzhou, Zhejiang, China
- 700 1_
- $a Li, Tingting $u College of Food Science and Biotechnology, Zhejiang, Gongshang University, Hangzhou, Zhejiang, China
- 700 1_
- $a Zhao, Jin $u College of Food Science and Biotechnology, Zhejiang, Gongshang University, Hangzhou, Zhejiang, China
- 700 1_
- $a Zhang, Chaohua $u Huangdong Ocean University, Zhanjiang, Guangdong, China
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 58, č. 3 (2013), s. 211-217
- 856 41
- $u http://link.springer.com/journal/12223/58/3/page/1 $y domovská stránka časopisu
- 910 __
- $a ABA008 $b online $c sign $y a $z 0
- 990 __
- $a 20140212 $b ABA008
- 991 __
- $a 20140415095640 $b ABA008
- 999 __
- $a ok $b bmc $g 1019644 $s 844591
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 58 $c 3 $d 211-217 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $b NLK111 $a Pubmed-20140212