• Something wrong with this record ?

NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations

M. Prague, D. Commenges, J. Guedj, J. Drylewicz, R. Thiébaut,

. 2013 ; 111 (2) : 447-58.

Language English Country Ireland

Document type Journal Article

Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14050993
003      
CZ-PrNML
005      
20140410125123.0
007      
ta
008      
140401s2013 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2013.04.014 $2 doi
035    __
$a (PubMed)23764196
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Prague, Mélanie
245    10
$a NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations / $c M. Prague, D. Commenges, J. Guedj, J. Drylewicz, R. Thiébaut,
520    9_
$a Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients.
650    _2
$a algoritmy $7 D000465
650    _2
$a látky proti HIV $x farmakokinetika $7 D019380
650    _2
$a Bayesova věta $7 D001499
650    _2
$a karbamáty $x farmakokinetika $7 D002219
650    _2
$a klinické zkoušky jako téma $7 D002986
650    _2
$a monitorování léčiv $x přístrojové vybavení $x metody $7 D016903
650    _2
$a HIV infekce $x farmakoterapie $7 D015658
650    _2
$a lidé $7 D006801
650    _2
$a pravděpodobnostní funkce $7 D016013
650    _2
$a statistické modely $7 D015233
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a software $7 D012984
650    _2
$a sulfonamidy $x farmakokinetika $7 D013449
655    _2
$a časopisecké články $7 D016428
700    1_
$a Commenges, Daniel $u -
700    1_
$a Guedj, Jérémie $u -
700    1_
$a Drylewicz, Julia $u -
700    1_
$a Thiébaut, Rodolphe $u -
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 111, č. 2 (2013), s. 447-58
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23764196 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140401 $b ABA008
991    __
$a 20140410125213 $b ABA008
999    __
$a ok $b bmc $g 1018129 $s 849573
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 111 $c 2 $d 447-58 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20140401

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...