Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation

M. Malinsky, R. Peter, E. Hodneland, AJ. Lundervold, A. Lundervold, J. Jan,

. 2013 ; 26 (4) : 774-85.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 2003 to 1 year ago
PubMed Central from 1997 to 2023
Europe PubMed Central from 1997 to 1 year ago
ProQuest Central from 1997-02-01 to 1 year ago
CINAHL Plus with Full Text (EBSCOhost) from 2006-03-01 to 1 year ago
Medline Complete (EBSCOhost) from 2003-03-01 to 1 year ago
Nursing & Allied Health Database (ProQuest) from 1997-02-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-02-01 to 1 year ago

In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14051209
003      
CZ-PrNML
005      
20140411122100.0
007      
ta
008      
140401s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10278-012-9561-8 $2 doi
035    __
$a (PubMed)23288436
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Malinsky, Milos
245    10
$a Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation / $c M. Malinsky, R. Peter, E. Hodneland, AJ. Lundervold, A. Lundervold, J. Jan,
520    9_
$a In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.
650    _2
$a senioři $7 D000368
650    _2
$a algoritmy $7 D000465
650    _2
$a anizotropie $7 D016880
650    _2
$a mozek $x anatomie a histologie $7 D001921
650    _2
$a mapování mozku $x metody $7 D001931
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a longitudinální studie $7 D008137
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a referenční hodnoty $7 D012016
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Peter, Roman $u -
700    1_
$a Hodneland, Erlend $u -
700    1_
$a Lundervold, Astri J $u -
700    1_
$a Lundervold, Arvid $u -
700    1_
$a Jan, Jiri $u -
773    0_
$w MED00006830 $t Journal of digital imaging $x 1618-727X $g Roč. 26, č. 4 (2013), s. 774-85
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23288436 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140401 $b ABA008
991    __
$a 20140411122151 $b ABA008
999    __
$a ok $b bmc $g 1018345 $s 849789
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 26 $c 4 $d 774-85 $i 1618-727X $m Journal of digital imaging $n J Digit Imaging $x MED00006830
LZP    __
$a Pubmed-20140401

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...