-
Je něco špatně v tomto záznamu ?
Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation
M. Malinsky, R. Peter, E. Hodneland, AJ. Lundervold, A. Lundervold, J. Jan,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2003 do Před 1 rokem
PubMed Central
od 1997 do 2023
Europe PubMed Central
od 1997 do Před 1 rokem
ProQuest Central
od 1997-02-01 do Před 1 rokem
CINAHL Plus with Full Text (EBSCOhost)
od 2006-03-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-03-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-02-01 do Před 1 rokem
- MeSH
- algoritmy MeSH
- anizotropie MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- mozek anatomie a histologie MeSH
- počítačové zpracování obrazu metody MeSH
- referenční hodnoty MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- software MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14051209
- 003
- CZ-PrNML
- 005
- 20140411122100.0
- 007
- ta
- 008
- 140401s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10278-012-9561-8 $2 doi
- 035 __
- $a (PubMed)23288436
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Malinsky, Milos
- 245 10
- $a Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation / $c M. Malinsky, R. Peter, E. Hodneland, AJ. Lundervold, A. Lundervold, J. Jan,
- 520 9_
- $a In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a anizotropie $7 D016880
- 650 _2
- $a mozek $x anatomie a histologie $7 D001921
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a longitudinální studie $7 D008137
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a referenční hodnoty $7 D012016
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Peter, Roman $u -
- 700 1_
- $a Hodneland, Erlend $u -
- 700 1_
- $a Lundervold, Astri J $u -
- 700 1_
- $a Lundervold, Arvid $u -
- 700 1_
- $a Jan, Jiri $u -
- 773 0_
- $w MED00006830 $t Journal of digital imaging $x 1618-727X $g Roč. 26, č. 4 (2013), s. 774-85
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23288436 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140411122151 $b ABA008
- 999 __
- $a ok $b bmc $g 1018345 $s 849789
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 26 $c 4 $d 774-85 $i 1618-727X $m Journal of digital imaging $n J Digit Imaging $x MED00006830
- LZP __
- $a Pubmed-20140401