• Je něco špatně v tomto záznamu ?

Can a late bloomer become an early bird? Tools for flowering time adjustment

Z. Milec, M. Valárik, J. Bartoš, J. Safář,

. 2013 ; 32 (1) : 200-14.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074621

The transition from the vegetative to reproductive stage followed by inflorescence is a critical step in plant life; therefore, studies of the genes that influence flowering time have always been of great interest to scientists. Flowering is a process controlled by many genes interacting mutually in a genetic network, and several hypothesis and models of flowering have been suggested so far. Plants in temperate climatic conditions must respond mainly to changes in the day length (photoperiod) and unfavourable winter temperatures. To avoid flowering before winter, some plants exploit a specific mechanism called vernalization. This review summarises current achievements in the study of genes controlling flowering in the dicot model species thale cress (Arabidopsis thaliana), as well as in monocot model species rice (Oryza sativa) and temperate cereals such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). The control of flowering in crops is an attractive target for modern plant breeding efforts aiming to prepare locally well-adapted cultivars. The recent progress in genomics revealed the importance of minor-effect genes (QTLs) and natural allelic variation of genes for fine-tuning flowering and better cultivar adaptation. We briefly describe the up-to-date technologies and approaches that scientists may employ and we also indicate how these modern biotechnological tools and "-omics" can expand our knowledge of flowering in agronomically important crops.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074621
003      
CZ-PrNML
005      
20141007100526.0
007      
ta
008      
141006s2013 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biotechadv.2013.09.008 $2 doi
035    __
$a (PubMed)24091290
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Milec, Zbyněk $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic. Electronic address: milec@ueb.cas.
245    10
$a Can a late bloomer become an early bird? Tools for flowering time adjustment / $c Z. Milec, M. Valárik, J. Bartoš, J. Safář,
520    9_
$a The transition from the vegetative to reproductive stage followed by inflorescence is a critical step in plant life; therefore, studies of the genes that influence flowering time have always been of great interest to scientists. Flowering is a process controlled by many genes interacting mutually in a genetic network, and several hypothesis and models of flowering have been suggested so far. Plants in temperate climatic conditions must respond mainly to changes in the day length (photoperiod) and unfavourable winter temperatures. To avoid flowering before winter, some plants exploit a specific mechanism called vernalization. This review summarises current achievements in the study of genes controlling flowering in the dicot model species thale cress (Arabidopsis thaliana), as well as in monocot model species rice (Oryza sativa) and temperate cereals such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). The control of flowering in crops is an attractive target for modern plant breeding efforts aiming to prepare locally well-adapted cultivars. The recent progress in genomics revealed the importance of minor-effect genes (QTLs) and natural allelic variation of genes for fine-tuning flowering and better cultivar adaptation. We briefly describe the up-to-date technologies and approaches that scientists may employ and we also indicate how these modern biotechnological tools and "-omics" can expand our knowledge of flowering in agronomically important crops.
650    _2
$a biotechnologie $7 D001709
650    _2
$a chov $7 D001947
650    12
$a zemědělské plodiny $x genetika $x fyziologie $7 D018556
650    12
$a květy $x genetika $x fyziologie $7 D035264
650    _2
$a genetické inženýrství $7 D005818
650    12
$a fotoperioda $7 D017440
650    12
$a geneticky modifikované rostliny $x genetika $x fyziologie $7 D030821
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Valárik, Miroslav $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic. Electronic address: valarik@ueb.cas.cz.
700    1_
$a Bartoš, Jan $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic. Electronic address: bartos@ueb.cas.cz.
700    1_
$a Safář, Jan $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic. Electronic address: safar@ueb.cas.cz.
773    0_
$w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 32, č. 1 (2013), s. 200-14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24091290 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141007101003 $b ABA008
999    __
$a ok $b bmc $g 1042504 $s 873533
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 32 $c 1 $d 200-14 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...