Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq

KJ. Mantione, RM. Kream, H. Kuzelova, R. Ptacek, J. Raboch, JM. Samuel, GB. Stefano,

. 2014 ; 20 (-) : 138-42.

Language English Country United States

Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't, Review

Understanding the control of gene expression is critical for our understanding of the relationship between genotype and phenotype. The need for reliable assessment of transcript abundance in biological samples has driven scientists to develop novel technologies such as DNA microarray and RNA-Seq to meet this demand. This review focuses on comparing the two most useful methods for whole transcriptome gene expression profiling. Microarrays are reliable and more cost effective than RNA-Seq for gene expression profiling in model organisms. RNA-Seq will eventually be used more routinely than microarray, but right now the techniques can be complementary to each other. Microarrays will not become obsolete but might be relegated to only a few uses. RNA-Seq clearly has a bright future in bioinformatic data collection.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014091
003      
CZ-PrNML
005      
20150428110528.0
007      
ta
008      
150420s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.12659/MSMBR.892101 $2 doi
035    __
$a (PubMed)25149683
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mantione, Kirk J $u Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.
245    10
$a Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq / $c KJ. Mantione, RM. Kream, H. Kuzelova, R. Ptacek, J. Raboch, JM. Samuel, GB. Stefano,
520    9_
$a Understanding the control of gene expression is critical for our understanding of the relationship between genotype and phenotype. The need for reliable assessment of transcript abundance in biological samples has driven scientists to develop novel technologies such as DNA microarray and RNA-Seq to meet this demand. This review focuses on comparing the two most useful methods for whole transcriptome gene expression profiling. Microarrays are reliable and more cost effective than RNA-Seq for gene expression profiling in model organisms. RNA-Seq will eventually be used more routinely than microarray, but right now the techniques can be complementary to each other. Microarrays will not become obsolete but might be relegated to only a few uses. RNA-Seq clearly has a bright future in bioinformatic data collection.
650    12
$a výpočetní biologie $7 D019295
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $7 D020411
650    _2
$a sekvenční analýza RNA $x metody $7 D017423
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Kream, Richard M $u Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.
700    1_
$a Kuzelova, Hana $u Center for Molecular and Cognitive Neuroscience, 1st Faculty of Medicine and Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Ptacek, Radek $u Center for Molecular and Cognitive Neuroscience, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Raboch, Jiri $u Center for Molecular and Cognitive Neuroscience, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Samuel, Joshua M $u Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.
700    1_
$a Stefano, George B $u Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.
773    0_
$w MED00184845 $t Medical science monitor basic research $x 2325-4416 $g Roč. 20, č. - (2014), s. 138-42
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25149683 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150428110831 $b ABA008
999    __
$a ok $b bmc $g 1071672 $s 896969
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 20 $c - $d 138-42 $i 2325-4416 $m Medical science monitor basic research $n Med Sci Monit Basic Res $x MED00184845
LZP    __
$a Pubmed-20150420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...