• Je něco špatně v tomto záznamu ?

Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis

M. Ovečka, T. Takáč, G. Komis, P. Vadovič, S. Bekešová, A. Doskočilová, V. Šamajová, I. Luptovčiak, O. Samajová, A. Schweighofer, I. Meskiene, C. Jonak, P. Křenek, I. Lichtscheidl, L. Škultéty, H. Hirt, J. Šamaj,

. 2014 ; 65 (9) : 2335-50.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15014461

Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014461
003      
CZ-PrNML
005      
20170202090634.0
007      
ta
008      
150420s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/jxb/eru115 $2 doi
035    __
$a (PubMed)24648569
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ovečka, Miroslav $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
245    10
$a Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis / $c M. Ovečka, T. Takáč, G. Komis, P. Vadovič, S. Bekešová, A. Doskočilová, V. Šamajová, I. Luptovčiak, O. Samajová, A. Schweighofer, I. Meskiene, C. Jonak, P. Křenek, I. Lichtscheidl, L. Škultéty, H. Hirt, J. Šamaj,
520    9_
$a Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.
650    _2
$a Arabidopsis $x genetika $x růst a vývoj $x metabolismus $7 D017360
650    _2
$a aktivace enzymů $7 D004789
650    _2
$a exprese genu $7 D015870
650    _2
$a Medicago sativa $x enzymologie $x genetika $7 D000455
650    _2
$a mitogenem aktivované proteinkinasy kinas $x genetika $x metabolismus $7 D020929
650    _2
$a rostlinné proteiny $x genetika $x metabolismus $7 D010940
650    _2
$a geneticky modifikované rostliny $x genetika $x růst a vývoj $x metabolismus $7 D030821
650    _2
$a transport proteinů $7 D021381
650    _2
$a soli $x metabolismus $7 D012492
650    _2
$a semenáček $x genetika $x růst a vývoj $x metabolismus $7 D036226
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Takáč, Tomáš $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Komis, George $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Vadovič, Pavol $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Bekešová, Slávka $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Doskočilová, Anna $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Šamajová, Veronika $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Luptovčiak, Ivan $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Samajová, Olga $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Schweighofer, Alois $u Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria.
700    1_
$a Meskiene, Irute $u Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria.
700    1_
$a Jonak, Claudia $u Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr Bohr-Gasse 3, A-1030 Vienna, Austria.
700    1_
$a Křenek, Pavel $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
700    1_
$a Lichtscheidl, Irene $u Institution of Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
700    1_
$a Škultéty, L'udovít $u Department of Rickettsiology, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
700    1_
$a Hirt, Heribert $u Unité de Recherche en Genomique Végétale, Université d'Evry-Val-d'essone, 2, rue Gaston Crémieux, F-91057 Evry, France.
700    1_
$a Šamaj, Jozef, $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic jozef.samaj@upol.cz. $d 1964- $7 mzk2007411538
773    0_
$w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 65, č. 9 (2014), s. 2335-50
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24648569 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20170202090802 $b ABA008
999    __
$a ok $b bmc $g 1072042 $s 897339
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 65 $c 9 $d 2335-50 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
LZP    __
$a Pubmed-20150420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...