-
Je něco špatně v tomto záznamu ?
Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins
H. Staleva, J. Komenda, MK. Shukla, V. Šlouf, R. Kaňa, T. Polívka, R. Sobotka,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2005-06-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2005-06-01 do 2015-12-31
Health & Medicine (ProQuest)
od 2005-06-01 do Před 1 rokem
PubMed
25706339
DOI
10.1038/nchembio.1755
Knihovny.cz E-zdroje
- MeSH
- beta-karoten chemie MeSH
- chlorofyl chemie MeSH
- elektrony MeSH
- fluorescenční spektrometrie MeSH
- fotochemické procesy * MeSH
- fotosyntéza MeSH
- karotenoidy chemie MeSH
- konformace proteinů MeSH
- přenos energie MeSH
- rostlinné proteiny chemie MeSH
- rostliny metabolismus MeSH
- sinice metabolismus MeSH
- spektrofotometrie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Synechocystis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plants collect light for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that are able to reversibly switch from harvesting to energy-dissipation mode to prevent damage of the photosynthetic apparatus. LHC antennae as well as other members of the LHC superfamily evolved from cyanobacterial ancestors called high light-inducible proteins (Hlips). Here, we characterized a purified Hlip family member HliD isolated from the cyanobacterium Synechocystis sp. PCC 6803. We found that the HliD binds chlorophyll-a (Chl-a) and β-carotene and exhibits an energy-dissipative conformation. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved via direct energy transfer from a Chl-a Qy state to the β-carotene S1 state. We did not detect any cation of β-carotene that would accompany Chl-a quenching. These results provide proof of principle that this quenching mechanism operates in the LHC superfamily and also shed light on the photoprotective role of Hlips and the evolution of LHC antennae.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022807
- 003
- CZ-PrNML
- 005
- 20150728094604.0
- 007
- ta
- 008
- 150709s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/nchembio.1755 $2 doi
- 035 __
- $a (PubMed)25706339
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Staleva, Hristina $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 245 10
- $a Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins / $c H. Staleva, J. Komenda, MK. Shukla, V. Šlouf, R. Kaňa, T. Polívka, R. Sobotka,
- 520 9_
- $a Plants collect light for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that are able to reversibly switch from harvesting to energy-dissipation mode to prevent damage of the photosynthetic apparatus. LHC antennae as well as other members of the LHC superfamily evolved from cyanobacterial ancestors called high light-inducible proteins (Hlips). Here, we characterized a purified Hlip family member HliD isolated from the cyanobacterium Synechocystis sp. PCC 6803. We found that the HliD binds chlorophyll-a (Chl-a) and β-carotene and exhibits an energy-dissipative conformation. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved via direct energy transfer from a Chl-a Qy state to the β-carotene S1 state. We did not detect any cation of β-carotene that would accompany Chl-a quenching. These results provide proof of principle that this quenching mechanism operates in the LHC superfamily and also shed light on the photoprotective role of Hlips and the evolution of LHC antennae.
- 650 _2
- $a karotenoidy $x chemie $7 D002338
- 650 _2
- $a chlorofyl $x chemie $7 D002734
- 650 _2
- $a sinice $x metabolismus $7 D000458
- 650 _2
- $a elektrony $7 D004583
- 650 _2
- $a přenos energie $7 D004735
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a světlosběrné proteinové komplexy $x metabolismus $7 D045342
- 650 12
- $a fotochemické procesy $7 D055668
- 650 _2
- $a fotosyntéza $7 D010788
- 650 _2
- $a rostlinné proteiny $x chemie $7 D010940
- 650 _2
- $a rostliny $x metabolismus $7 D010944
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 650 _2
- $a spektrofotometrie $7 D013053
- 650 _2
- $a Synechocystis $x metabolismus $7 D046939
- 650 _2
- $a beta-karoten $x chemie $7 D019207
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Komenda, Josef $u 1] Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. [2] Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.
- 700 1_
- $a Shukla, Mahendra K $u 1] Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. [2] Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.
- 700 1_
- $a Šlouf, Václav $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 700 1_
- $a Kaňa, Radek $u 1] Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. [2] Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.
- 700 1_
- $a Polívka, Tomáš $u 1] Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. [2] Biology Centre, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
- 700 1_
- $a Sobotka, Roman $u 1] Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. [2] Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic.
- 773 0_
- $w MED00008683 $t Nature chemical biology $x 1552-4469 $g Roč. 11, č. 4 (2015), s. 287-91
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25706339 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150728094649 $b ABA008
- 999 __
- $a ok $b bmc $g 1083146 $s 905800
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 11 $c 4 $d 287-91 $i 1552-4469 $m Nature chemical biology $n Nat Chem Biol $x MED00008683
- LZP __
- $a Pubmed-20150709